Microinjection of foreign DNA in male pronucleus by in-vitro embryo manipulation is difficult but remains the method of choice for generating transgenic animals. Other procedures, including retroviral and embryonic stem cell mediated transgenesis are equally complicated and have limitations. Although our previously reported technique of testicular transgenesis circumvented several limitations, it involved many steps, including surgery and hemicastration, which carried risk of infection and impotency. We improved this technique further, into a two step non-surgical electroporation procedure, for making transgenic mice. In this approach, transgene was delivered inside both testes by injection and modified parameters of electroporation were used for in-vivo gene integration in germ cells. Using variety of constructs, germ cell integration of the gene and its transmission in progeny was confirmed by PCR, slot blot and immunohistochemical analysis. This improved technique is efficient, requires substantially less time and can be easily adopted by various biomedical researchers.
BackgroundSpermatogonial stem cell (SSC) transplantation (SSCT) has become important for conservation of endangered species, transgenesis and for rejuvenating testes which have lost germ cells (Gc) due to gonadotoxic chemotherapy or radiotherapy during the prepubertal phase of life. Creating a germ cell-depleted animal model for transplantation of normal or gene-transfected SSC is a prerequisite for such experimental studies. Traditionally used intraperitoneal injections of busulfan to achieve this are associated with painful hematopoietic toxicity and affects the wellbeing of the animals. Use of testicular busulfan has been reported recently to avoid this but with a very low success rate of SSCT. Therefore, it is necessary to establish a more efficient method to achieve higher SSCT without any suffering or mortality of the animals.MethodsA solution of busulfan, ranging from 25 μg/20 μl to 100 μg/20 μl in 50 % DMSO was used for this study. Each testis received two diagonally opposite injections of 10 μl each. Only DMSO was used as control. Germ cell depletion was checked every 15 days. GFP-expressing SSC from transgenic donor mice C57BL/6-Tg (UBC-GFP) 30Scha/J were transplanted into busulfan-treated testis. Two months after SSCT, mice were analyzed for presence of colonies of donor-derived SSC and their ability to generate offspring.ResultsA dose of 75 μg of busulfan resulted in reduction of testis size and depletion of the majority of Gc of testis in all mice within 15 days post injection without causing mortality or a cytotoxic effect in other organs. Two months after SSCT, colonies of donor-derived Gc-expressing GFP were observed in recipient testes. When cohabitated with females, donor-derived offspring were obtained. By our method, 71 % of transplanted males sired transgenic progeny as opposed to 5.5 % by previously described procedures. About 56 % of progeny born were transgenic by our method as opposed to 1.2 % by the previously reported methods.ConclusionsWe have established an efficient method of generating a germ cell-depleted animal model by using a lower dose of busulfan, injected through two diagonally opposite sites in the testis, which allows efficient colonization of transplanted SSC resulting in a remarkably higher proportion of donor-derived offspring generation.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-016-0405-1) contains supplementary material, which is available to authorized users.
Testicular Sertoli cells make a niche for the division and differentiation of germ cells. Sertoli cells respond to increased follicle-stimulating hormone (FSH) and testosterone (T) levels at the onset of puberty by producing paracrine factors which affect germ cells and trigger robust onset of spermatogenesis. Such paracrine support to germ cells is absent during infancy, despite Sertoli cells being exposed to high FSH and T within the infant testis. This situation is similar to certain cases of male idiopathic infertility where post-pubertal Sertoli cells fail to support germ cell division and differentiation in spite of endogenous or exogenous hormonal support. Defective Sertoli cells in such individuals may fail to express the full complement of their paracrine repertoire. Identification and supplementation with such factors may overcome Sertoli cells deficiencies and help trigger quantitatively and qualitatively normal differentiation of germ cells. To this end, we compared the transcriptome of FSH- and T-treated infant and pubertal monkey Sertoli cells by DNA microarray. Expression of Wnt3, a morphogen of the Wnt/β-catenin pathway, was higher in pubertal Sertoli cells relative to infant Sertoli cells. Transgenic mice were generated by us in which Wnt3 expression was curtailed specifically in post-pubertal Sertoli cells by shRNA. Subfertility and oligozoospermia were noticed in such animals with low Wnt3 expression in post-pubertal Sertoli cells along with diminished expression of Connexin43, a gap-junctional molecule essential for germ cell development. We report that the FSH- and T-targetedf Wnt3 governs Sertoli cell-mediated regulation of spermatogenesis and hence is crucial for fertility.
Our ability to decipher gene sequences has increased enormously with the advent of modern sequencing tools, but the ability to divulge functions of new genes have not increased correspondingly. This has caused a remarkable delay in functional interpretation of several newly found genes in tissue and age specific manner, limiting the pace of biological research. This is mainly due to lack of advancements in methodological tools for transgenesis. Predominantly practiced method of transgenesis by pronuclear DNA-microinjection is time consuming, tedious, and requires highly skilled persons for embryo-manipulation. Testicular electroporation mediated transgenesis requires use of electric current to testis. To this end, we have now developed an innovative technique for making transgenic mice by giving hypotonic shock to male germ cells for the gene delivery. Desired transgene was suspended in hypotonic Tris-HCl solution (pH 7.0) and simply injected in testis. This resulted in internalization of the transgene in dividing germ-cells residing at basal compartment of tubules leading to its integration in native genome of mice. Such males generated transgenic progeny by natural mating. Several transgenic animals can be generated with minimum skill within short span of time by this easily adaptable novel technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.