Patients with chronic lymphocytic leukemia (CLL) typically suffer from frequent and severe bacterial infections. Although it is well known that neutrophils are critical innate immune cells facilitating the early defense, the underlying phenotypical and functional changes in neutrophils during CLL remain largely elusive. Using a murine adoptive transfer model of CLL, we demonstrate aggravated bacterial burden in CLL-bearing mice upon a urinary tract infection with uropathogenic Escherichia coli. Bioinformatic analyses of the neutrophil proteome revealed increased expression of proteins associated with interferon signaling and decreased protein expression associated with granule composition and neutrophil migration. Functional experiments validated these findings by showing reduced levels of myeloperoxidase and acidification of neutrophil granules after ex vivo phagocytosis of bacteria. Pathway enrichment analysis indicated decreased expression of molecules critical for neutrophil recruitment, and migration of neutrophils into the infected urinary bladder was significantly reduced. These altered migratory properties of neutrophils were also associated with reduced expression of CD62L and CXCR4 and correlated with an increased incidence of infections in patients with CLL. In conclusion, this study describes a molecular signature of neutrophils through proteomic, bioinformatic, and functional analyses that are linked to a reduced migratory ability, potentially leading to increased bacterial infections in patients with CLL.
Neutrophils play a complex role during onset of tissue injury and subsequent resolution and healing. To assess neutrophil dynamics upon cardiovascular injury, here we develop a non-invasive, background-free approach for specific mapping of neutrophil dynamics by whole-body magnetic resonance imaging using targeted multimodal fluorine-loaded nanotracers engineered with binding peptides specifically directed against murine or human neutrophils. Intravenous tracer application before injury allowed non-invasive three-dimensional visualization of neutrophils within their different hematopoietic niches over the entire body and subsequent monitoring of their egress into affected tissues. Stimulated murine and human neutrophils exhibited enhanced labeling due to upregulation of their target receptors, which could be exploited as an in vivo readout for their activation state in both sterile and nonsterile cardiovascular inflammation. This non-invasive approach will allow us to identify hidden origins of bacterial or sterile inflammation in patients and also to unravel cardiovascular disease states on the verge of severe aggravation due to enhanced neutrophil infiltration or activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.