Understanding the changing nature of the intraseasonal oscillatory (ISO) modes of Indian summer monsoon manifested by active and break phase, and their association with extreme rainfall events are necessary for probabilistic estimation of flood-related risks in a warming climate. Here, using groundbased observed rainfall, we define an index to measure the strength of monsoon ISOs and show that the relative strength of the northward-propagating low-frequency ISO (20-60 days) modes have had a significant decreasing trend during the past six decades, possibly attributed to the weakening of largescale circulation in the region during monsoon season. This reduction is compensated by a gain in synoptic-scale (3-9 days) variability. The decrease in low-frequency ISO variability is associated with a significant decreasing trend in the percentage of extreme events during the active phase of the monsoon. However, this decrease is balanced by significant increasing trends in the percentage of extreme events in the break and transition phases. We also find a significant rise in the occurrence of extremes during early and late monsoon months, mainly over eastern coastal regions. Our study highlights the redistribution of rainfall intensity among periodic (low-frequency) and non-periodic (extreme) modes in a changing climate scenario.
In this study, rainfall estimates by the Tropical Rainfall Measuring Mission are used to understand the spatiotemporal structures of convection in the intraseasonal time scale and their intensity during the boreal summer over South Asia. A quantitative analysis on how these intraseasonal modes modulate the central Indian rainfall is also provided. Two dominant modes of variability with periodicities of 10–20 and 20–60 days are found, with the latter strongly modulated by sea surface temperature. The 20–60-day mode shows northward propagation from the equatorial Indian Ocean linked with eastward-propagating modes of convective systems over the tropics. The 10–20-day mode shows a complex space–time structure with a northwestward-propagating anomalous pattern emanating from the Indonesian coast. This pattern is found to be interacting with a structure emerging from higher latitudes propagating southeastward, the development of which is attributed to the vertical shear of the zonal wind. The two modes exhibit profound variability in their intensity on the interannual time scale and they contribute a comparable amount to the daily rainfall variability in a season. The intensity of the 20–60 and 10–20-day modes shows a significantly strong inverse and direct relationship with the all-India June–September rainfall, respectively. This study establishes that the probability of the occurrence of substantial rainfall over central India increases significantly if the two intraseasonal modes simultaneously exhibit positive anomalies over the region. The results presented in this paper will provide a pathway to understand, using observations and numerical model simulations, intraseasonal variability and its relative contribution to the Indian summer monsoon. It can also be used for model evaluation.
The Indian summer monsoon (ISM) shows quasi-rhythmic intraseasonal oscillations (ISO) manifested as alternate ‘active’ phases of copious rainfall and quiescent phases of ‘break’. Within these periodic phases, the daily rainfall shows large variability and exhibits spatiotemporally sporadic extreme rainfall events. The recent decades have witnessed a significant increase in the number of these extreme rainfall events, especially in the quiescent phases. This increase is accompanied by a decreasing trend in the mean monsoon rainfall and a weakening variance of its low-frequency ISO (LF-ISO) cycle. However, any physical link between this apparent paradox of increased extreme rainfall events and weakened slower-time-scale components is not yet reported. Here, using observations and numerical model simulations, we show that the occurrence of extreme rainfall events, primarily in the break phase of an LF-ISO cycle, reduce the intensity of the following active phase by stabilizing the atmosphere. We found that extreme events in a monsoon break leads to a reduction in the vertical shear of zonal winds and an increase in the static stability of the atmosphere in the following break-to-active transition and active phases. These conditions oppose the initiation and development of an active phase and lessen its intensity. This reduces the LF-ISO intensity and mean ISM rainfall.
Intraseasonal oscillations (ISOs) in the Indian summer monsoon represent dominant modes of variability of that circulation (Sikka & Gadgil, 1980; Yasunari, 1979). One of the most prominent manifestations of these ISOs is characterized by northward propagation of rain bands from the equatorial Indian Ocean to the foothills of the Himalayas with a periodicity of 20-60 days (Ajaya Mohan & Goswami, 2003; Karmakar et al., 2017a; Krishnamurthy & Shukla, 2007). This ISO is often associated with an eastward-propagating planetary-scale circulation traveling at a speed of almost 8° longitude/day (Krishnamurti et al., 1985) that is commonly referred to as the Madden-Julian oscillation (Karmakar & Krishnamurti, 2019; Madden & Julian, 1972; Pai et al., 2011; Singh et al., 1992). Active-break cycles of rainfall over India during the monsoon season are often associated with the passage of this ISO (Karmakar et al., 2017a; Rajeevan et al., 2010). Here, we examine the association of this ISO with synoptic-scale precipitating vortices, also known as low-pressure systems (LPS). In South Asia, weaker LPS are typically called monsoon lows and stronger ones are called monsoon depressions. These lows and depressions together account for around half of the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.