Identifying private gardens in the U.K. as key sites of environmental engagement, we look at how a longer-term online citizen science programme facilitated the development of new and personal attachments of nature. These were visible through new or renewed interest in wildlife-friendly gardening practices and attitudinal shifts in a large proportion of its participants. Qualitative and quantitative data, collected via interviews, focus groups, surveys and logging of user behaviours, revealed that cultivating a fascination with species identification was key to both ‘helping nature’ and wider learning, with the programme creating a space where scientific and non-scientific knowledge could co-exist and reinforce one another.
To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK’s national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository. Electronic supplementary materialThe online version of this article (doi:10.1007/s13280-015-0709-x) contains supplementary material, which is available to authorized users.
Corpora have given rise to a wide range of lexicographic resources aimed at helping novice users of academic English with their writing. This includes academic vocabulary lists, a variety of textbooks, and even a bespoke academic English dictionary. However, writers may not be familiar with these resources or may not be sufficiently aware of the lexical shortcomings of their emerging texts to trigger the need to use such help in the first place. Moreover, writers who have to stop writing to look up a word can be distracted from getting their ideas down on paper. The ColloCaid project (www.collocaid.uk) aims to address these problems by integrating information on collocation with text editors. In this paper, we share the research underpinning the initial development of ColloCaid by detailing the rationale of (1) the lexicographic database we are compiling to support the collocation needs of novice users of English for Academic Purposes (EAP) and (2) the preliminary visualisation decisions taken to present information on collocation to EAP users without disrupting their writing. We conclude the paper by outlining the next steps in the research.
In recent years, the number and scale of environmental citizen science programmes that involve lay people in scientific research have increased rapidly. Many of these initiatives are concerned with the recording and identification of species, processes which are increasingly mediated through digital interfaces. Here, we address the growing need to understand the particular role of digital identification tools, both in generating scientific data and in supporting learning by lay people engaged in citizen science activities pertaining to biological recording communities. Starting from two well-known identification tools, namely identification keys and field guides, this study focuses on the decision-making and quality of learning processes underlying species identification tasks, by comparing three digital interfaces designed to identify bumblebee species. The three interfaces varied with respect to whether species were directly compared or filtered by matching on visual features; and whether the order of filters was directed by the interface or a user-driven open choice. A concurrent mixed-methods approach was adopted to compare how these different interfaces affected the ability of participants to make correct and quick species identifications, and to better understand how participants learned through using these interfaces. We found that the accuracy of identification and quality of learning were dependent upon the interface type, the difficulty of the specimen on the image being identified and the interaction between interface type and ‘image difficulty’. Specifically, interfaces based on filtering outperformed those based on direct visual comparison across all metrics, and an open choice of filters led to higher accuracy than the interface that directed the filtering. Our results have direct implications for the design of online identification technologies for biological recording, irrespective of whether the goal is to collect higher quality citizen science data, or to support user learning and engagement in these communities of practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.