Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
BEaTriX (Beam Expander Testing X-ray) is the X-ray facility under construction at the INAF-Osservatorio Astronomico Brera (Merate, Italy) to prove that it is possible to perform the X-ray acceptance tests (PSF and Aeff) of the ATHENA mirror modules at the required rate and with the required accuracy. The unique optical setup makes use of a micro-focus X-ray source with anode in Titanium, a paraboloidal mirror with small radius of curvature, and a set of crystals to monochromate and expand the beam to fully illuminate the entrance pupil of the ATHENA MMs. The quality of the optical components, and their precise alignment, guarantees the production of a parallel beam at 4.51 keV, to be extended in a second phase to 1.49 keV able to perform the acceptance requirements for the ATHENA MMs. The facility is completed and the alignment of the various components is now ongoing and expected to be completed in fall this year, with the X-ray beam fully qualified. Then the commissioning will start with the tests on the ATHENA MMs. In this paper, we present the current status.
The mirror coatings for the Athena X-ray telescope assumes Ir/SiC bilayer thin films as a baseline design.Adding the soft overcoat to the Ir X-ray mirror coatings for the Athena optics is used to improve the low energy performance necessary to achieve the telescope effective area requirements. The Athena mirror is based on silicon pore optics technology, for which the manufacturing process involves a sequence of wet chemical and thermal post-coating treatments of the mirror plates. Establishing compatibility of the thin film material candidates following exposure to these processes is critical for the Athena mission since the specific coating quality will influence the performance of the X-ray telescope. We present an investigation of Ir and Ir/SiC thin films exposed to post-coating treatments based on coatings produced at DTU Space. The current status of the chemical procedures is presented with representative coatings from the Athena-dedicated coating facility.
Aims. The Beam Expander Testing X-ray facility (BEaTriX) is a unique X-ray apparatus now operated at the Istituto Nazionale di Astrofisica (INAF), Osservatorio Astronomico di Brera (OAB), in Merate, Italy. It has been specifically designed to measure the point spread function (PSF) and the effective area (EA) of mirror modules (MM) of the Advanced Telescope for High-ENergy Astrophysics (ATHENA) X-ray telescope, based on the silicon pore optics (SPO) technology, for acceptance before integration into the mirror assembly. To this end, BEaTriX generates a broad, uniform, monochromatic, and collimated X-ray beam at 4.51 keV. The beam collimation is better than a few arcseconds to ensure reliable tests of the ATHENA MMs, in their focus, at a 12 m distance. Methods. In BEaTriX, a micro-focus X-ray source with titanium anode is placed in the focus of a paraboloidal mirror, which generates a parallel beam. A crystal monochromator selects the 4.51 keV line, which is expanded to the final size by a crystal asymmetrically cut with respect to the crystalline planes. An in-house built Hartmann plate was used to characterize the X-ray beam divergence, observing the deviation of X-ray beams from the nominal positions, on a 12 m-distant CCD camera. After characterization, the BEaTriX beam has the nominal dimensions of 60 mm × 170 mm, with a vertical divergence of 1.65 arcsec and an horizontal divergence varying between 2.7 and 3.45 arcsec, depending on the monochromator setting on either high collimation or high intensity. The flux per area unit varies from 10 to 50 photons/s/cm 2 from one configuration to another. Results. The BEaTriX beam performance was tested using an SPO MM, whose entrance pupil was fully illuminated by the expanded beam, and its focus was directly imaged onto the camera. The first light test returned a PSF and an EA in full agreement with the expectations. As of today, the 4.51 keV beamline of BEaTriX is operational and can characterize modular X-ray optics, measuring their PSF and EA with a typical exposure of 30 minutes. Another beamline at 1.49 keV is under development and will be integrated into the current equipment. We expect BEaTriX to be a crucial facility for the functional test of modular X-ray optics, such as the SPO MMs for ATHENA.
We present an experimental examination of iridium and boron carbide thin film coatings for the purpose of fabricating X-ray optics. We use a combination of X-ray reflectometry and X-ray photoelectron spectroscopy to model the structure, composition, density, thickness and micro-roughness of the thin films. We demonstrate in our analyses how the two characterization techniques are complementary and from this we derive that an overlayer originating from atmospheric contamination with a thickness between 1.0-1.6 nm is present on the surface. The magnetron sputtered iridium films are measured to have a density of 22.4 g/cm 3 . The boron carbide film exhibits a change in chemical composition in the top ∼2 nm of the film surface when exposed to the ambient atmosphere. The chemical reaction occurring on the surface is due to an incorporation of oxygen and hydrogen present in the ambient atmosphere. Lastly, we present a correlation between the absorption edges and the emission lines exhibited by the thin films in an energy range from 50-800 eV and the impact on the reflectivity performance due to contamination in thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.