Introduction. Brain imaging is becoming a powerful tool in the study of human cerebral functions related to close personal relationships. Outside of subcortical structures traditionally thought to be involved in reward-related systems, a wide range of neuroimaging studies in relationship science indicate a prominent role for different cortical networks and cognitive factors. Thus, the field needs a better anatomical/network/whole-brain model to help translate scientific knowledge from lab bench to clinical models and ultimately to the patients suffering from disorders associated with love and couple relationships. Aim. The aim of the present review is to provide a review across wide range of functional magnetic resonance imaging (fMRI) studies to critically identify the cortical networks associated with passionate love, and to compare and contrast it with other types of love (such as maternal love and unconditional love for persons with intellectual disabilities). Methods. Retrospective review of pertinent neuroimaging literature. Main Outcome Measures. Review of published literature on fMRI studies of love illustrating brain regions associated with different forms of love. Results. Although all fMRI studies of love point to the subcortical dopaminergic reward-related brain systems (involving dopamine and oxytocin receptors) for motivating individuals in pair-bonding, the present meta-analysis newly demonstrated that different types of love involve distinct cerebral networks, including those for higher cognitive functions such as social cognition and bodily self-representation. Conclusions. These metaresults provide the first stages of a global neuroanatomical model of cortical networks involved in emotions related to different aspects of love. Developing this model in future studies should be helpful for advancing clinical approaches helpful in sexual medicine and couple therapy. Ortigue S, Bianchi-Demicheli F, Patel N, Frum C, and Lewis JW. Neuroimaging of love: fMRI meta-analysis evidence toward new perspectives in sexual medicine.
Recent theories of embodied cognition suggest that congruence between observed actions and integrated templates of self-related motor experiences facilitates intention understanding of significant others. We tested this hypothesis in 60 participants using response latency measures and a motor intention inference task, which involved video clips of actions performed either by themselves, their beloved partner, or by acquaintances or strangers (as controls). Results show significantly faster reaction times when participants had to understand the intentions of themselves and their significant others, especially if they reported being passionately in love with their significant others. These findings provide an account for facilitation effects of embodied cognition on intention understanding among dyads in love.
Introduction Electroencephalogram (EEG) combined with brain source localization algorithms is becoming a powerful tool in the neuroimaging study of human cerebral functions. Aim The present article provides a tutorial on the various EEG methods currently used to study the human brain activity, notably during sexual response. Main Outcome Measures Review of published literature on standard EEG waveform analyses and most recent electrical neuroimaging techniques (microstate approach and two methods of brain source localization). Methods Retrospective overview of pertinent literature. Results Although the standard EEG waveform analyses enable millisecond time-resolution information about the human sexual responses in the brain, less is clear about their related spatial information. Nowadays, the improvement of EEG techniques and statistical approaches allows the visualization of the dynamics of the human sexual response with a higher spatiotemporal resolution. Here, we describe these enhanced techniques and summarize along with an overview of what we have learned from them in terms of chronoarchitecture of sexual response in the human brain. Finally, the speculation on how we may be able to use other enhanced approaches, such as independent component analysis, are also presented. Conclusions EEG neuroimaging has already been proven as a strong worthwhile research tool. Combining this approach with standard EEG waveform analyses in sexual medicine may provide a better understanding of the neural activity underlying the human sexual response in both healthy and clinical populations.
Studying the way athletes predict actions of their peers during fast-ball sports, such as a tennis, has proved to be a valuable tool for increasing our knowledge of intention understanding. The working model in this area is that the anticipatory representations of others' behaviors require internal predictive models of actions formed from pre-established and shared representations between the observer and the actor. This model also predicts that observers would not be able to read accurately the intentions of a competitor if the competitor were to perform the action without prior knowledge of their intention until moments before the action. To test this hypothesis, we recorded brain activity from 25 male tennis players while they performed a novel behavioral tennis intention inference task, which included two conditions: (i) one condition in which they viewed video clips of a tennis athlete who knew in advance where he was about to act/serve (initially intended serves) and (ii) one condition in which they viewed video clips of that same athlete when he did not know where he was to act/serve until the target was specified after he had tossed the ball into the air to complete his serve (non-initially intended serves). Our results demonstrated that (i) tennis expertise is related to the accuracy in predicting where another server intends to serve when that server knows where he intends to serve before (but not after) he tosses the ball in the air; and (ii) accurate predictions are characterized by the recruitment of both cortical areas within the human mirror neuron system (that is known to be involved in higher-order (top-down) processes of embodied cognition and shared representation) and subcortical areas within brain regions involved in procedural memory (caudate nucleus). Interestingly, inaccurate predictions instead recruit areas known to be involved in low-level (bottom-up) computational processes associated with the sense of agency and self-other distinction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.