The porphyrin photosensitizer, meso-Tetra (4-N-methylpyridyl) porphine tetraperchlorate binds to calf thymus DNA by intercalation and by external electrostatic association. This was concluded from the results of measruements involving Scatchard analysis, viscometry, thermal denaturation, and circular dichroism.
SUMMARYRegulations of Arabidopsis seedling growth by two proteins, which belong to different classes of transcription factors, are poorly understood. MYC2 and GBF1 belong to bHLH and bZIP classes of transcription factors, respectively, and function in cryptochrome-mediated blue light signaling. Here, we have investigated the molecular and functional interrelation of MYC2 and GBF1 in blue light-mediated photomorphogenesis. Our study reveals that MYC2 and GBF1 colocalize and physically interact in the nucleus. This interaction requires the N-terminal domain of each protein. The atmyc2 gbf1 double mutant analyses and transgenic studies have revealed that MYC2 and GBF1 act antagonistically and inhibit the activity of each other to regulate hypocotyl growth and several other biological processes. This study further reveals that MYC2 and GBF1 bind to HYH promoter and inhibit each other through non-DNA binding bHLH-bZIP heterodimers. These results, taken together, provide insights into the mechanistic view on the concerted regulatory role of MYC2 and GBF1 in Arabidopsis seedling development.
Arabidopsis MYC2 bHLH transcription factor plays a negative regulatory role in blue light (BL)-mediated seedling development. HY5 bZIP protein works as a positive regulator of multiple wavelengths of light and promotes photomorphogenesis. Both MYC2 and HY5, belonging to two different classes of transcription factors, are the integrators of multiple signaling pathways. However, the functional interrelations of these two transcription factors in seedling development remain unknown. Additionally, whereas HY5-mediated regulation of gene expression has been investigated in detail, the transcriptional regulation of HY5 itself is yet to be understood. Here, we show that HY5 and MYC2 work in an antagonistic manner in Arabidopsis seedling development. Our results reveal that HY5 expression is negatively regulated by MYC2 predominantly in BL, and at various stages of development. On the other hand, HY5 negatively regulates the expression of MYC2 at various wavelengths of light. In vitro and in vivo DNA-protein interaction studies suggest that MYC2 binds to the E-box cis-acting element of HY5 promoter. Collectively, this study demonstrates a coordinated regulation of MYC2 and HY5 in blue-light-mediated Arabidopsis seedling development.
BackgroundArabidopsis ZBF1/MYC2bHLH transcription factor is a repressor of photomorphogenesis, and acts as a point of cross talk in light, abscisic acid (ABA) and jasmonic acid (JA) signaling pathways. MYC2 also functions as a positive regulator of lateral root development and flowering time under long day conditions. However, the function of MYC2 in growth and development remains unknown in crop plants.ResultsHere, we report the functional analyses of LeMYC2 in tomato (Lycopersicon esculentum). The amino acid sequence of LeMYC2 showed extensive homology with Arabidopsis MYC2, containing the conserved bHLH domain. To study the function of LeMYC2 in tomato, overexpression and RNA interference (RNAi) LeMYC2 tomato transgenic plants were generated. Examination of seedling morphology, physiological responses and light regulated gene expression has revealed that LeMYC2 works as a negative regulator of blue light mediated photomorphogenesis. Furthermore, LeMYC2 specifically binds to the G-box of LeRBCS-3A promoter. Overexpression of LeMYC2 has led to increased root length with more number of lateral roots. The tomato plants overexpressing LeMYC2 have reduced internode distance with more branches, and display the opposite morphology to RNAi transgenic lines. Furthermore, this study shows that LeMYC2 promotes ABA and JA responsiveness.ConclusionsCollectively, this study highlights that working in light, ABA and JA signaling pathways LeMYC2 works as an important regulator for growth and development in tomato plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.