Background Adenoid cystic carcinoma (ACC) is an aggressive salivary gland malignancy without effective systemic therapies. Delineation of molecular profiles in ACC has led to an increased number of biomarker‐stratified clinical trials; however, the clinical utility and U.S.‐centric financial sustainability of integrated next‐generation sequencing (NGS) in routine practice has, to our knowledge, not been assessed. Materials and Methods In our practice, NGS genotyping was implemented at the discretion of the primary clinician. We combined NGS‐based mutation and fusion detection, with MYB break‐apart fluorescent in situ hybridization (FISH) and MYB immunohistochemistry. Utility was defined as the fraction of patients with tumors harboring alterations that are potentially amenable to targeted therapies. Financial sustainability was assessed using the fraction of global reimbursement. Results Among 181 consecutive ACC cases (2011–2018), prospective genotyping was performed in 11% (n = 20/181; n = 8 nonresectable). Testing identified 5/20 (25%) NOTCH1 aberrations, 6/20 (30%) MYB‐NFIB fusions (all confirmed by FISH), and 2/20 (10%) MYBL1‐NFIB fusions. Overall, these three alterations (MYB/MYBL1/NOTCH1) made up 65% of patients, and this subset had a more aggressive course with significantly shorter progression‐free survival. In 75% (n = 6/8) of nonresectable patients, we detected potentially actionable alterations. Financial analysis of the global charges, including NGS codes, indicated 63% reimbursement, which is in line with national (U.S.‐based) and international levels of reimbursement. Conclusion Prospective routine clinical genotyping in ACC can identify clinically relevant subsets of patients and is approaching financial sustainability. Demonstrating clinical utility and financial sustainability in an orphan disease (ACC) requires a multiyear and multidimensional program. Implications for Practice Delineation of molecular profiles in adenoid cystic carcinoma (ACC) has been accomplished in the research setting; however, the ability to identify relevant patient subsets in clinical practice has not been assessed. This work presents an approach to perform integrated molecular genotyping of patients with ACC with nonresectable, recurrent, or systemic disease. It was determined that 75% of nonresectable patients harbor potentially actionable alterations and that 63% of charges are reimbursed. This report outlines that orphan diseases such as ACC require a multiyear, multidimensional program to demonstrate utility in clinical practice.
Background. Update 3 of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) recognizes amplification of epidermal growth factor receptor (EGFR) as one important aberration in diffuse gliomas (World Health Organization [WHO] grade II/III). While these recommendations endorse testing, a cost-effective, clinically relevant testing paradigm is currently lacking. Here, we use real-world clinical data to propose a financially effective diagnostic test algorithm in the context of new guidelines. Methods. To determine the prevalence, distribution, neuroradiographic features (Visually Accessible REMBRANDT Images [VASARI]), and prognostic relevance of EGFR amplification in lower-grade gliomas, we assembled a consecutive series of diffuse gliomas. For validation we included publicly available data from The Cancer Genome Atlas. For a cost-utility analysis we compared combined EGFR and isocitrate dehydrogenase (IDH) testing, EGFR testing based on IDH results, and no EGFR testing. Results. In n = 71 WHO grade II/III gliomas, we identified EGFR amplification in 28.2%. With one exception, all EGFR amplifications occurred in IDH-wildtype gliomas. Comparison of overall survival showed that EGFR amplification denotes a significantly more aggressive subset of tumors (P < 0.0001, log-rank). The radiologic phenotype in the EGFR-amplified tumors includes diffusion restriction (15%, P = 0.02), >5% tumor contrast enhancement (75%, P = 0.016), and mild (not avid) enhancement (P = 0.016). The proposed testing algorithm reserves EGFR fluorescence in situ hybridization (FISH) testing for IDH-wildtype cases. Implementation would result in ~37.9% cost reduction at our institution, or about $1.3-4 million nationally. Conclusion. EGFR-amplified diffuse gliomas are "glioblastoma-like" in their behavior and may represent undersampled glioblastomas, or subsets of IDH-wildtype diffuse gliomas with inherently aggressive biology. EGFR FISH after IDH testing is a financially effective and clinically relevant test algorithm for routine clinical practice. Key Points1. EGFR-amplified diffuse gliomas are "glioblastoma-like" in their behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.