Recent studies have found that vasogenic brain edema is present during hepatic encephalopathy following acute liver failure and is dependent upon increased matrix metalloproteinase 9 (MMP9) activity and downregulation of tight junction proteins. Furthermore, circulating transforming growth factor β1 (TGFβ1) is increased following liver damage and may promote endothelial cell permeability. This study aimed to assess if increased circulating TGFβ1 drives changes in tight junction protein expression and MMP9 activity following acute liver failure. Blood-brain barrier permeability was assessed in azoxymethane (AOM)-treated mice at 6, 12, and 18 hours post-injection via Evan’s blue extravasation. Monolayers of immortalized mouse brain endothelial cells (bEnd.3) were treated with recombinant TGFβ1 (rTGFβ1) and permeability to fluorescein isothiocyanate-dextran (FITC-dextran), MMP9 and claudin-5 expression were assessed. Antagonism of TGFβ1 signaling was performed in vivo to determine its role in blood-brain barrier permeability. Blood-brain barrier permeability was increased in mice at 18 hours following AOM injection. Treatment of bEnd.3 cells with rTGFβ1 led to a dose-dependent increase of MMP9 expression as well as a suppression of claudin-5 expression. These effects of rTGFβ1 on MMP9 and claudin-5 expression could be reversed following treatment with a SMAD3 inhibitor. AOM-treated mice injected with neutralizing antibodies against TGFβ demonstrated significantly reduced blood-brain barrier permeability. Blood-brain barrier permeability is induced in AOM mice via a mechanism involving the TGFβ1-driven SMAD3-dependent upregulation of MMP9 expression and decrease of claudin-5 expression. Therefore, treatment modalities aimed at reducing TGFβ1 levels or SMAD3 activity may be beneficial in promoting blood-brain barrier integrity following liver failure.
Suppression of the hypothalamic-pituitary-adrenal (HPA) axis has been shown to occur during cholestatic liver injury. Furthermore, we have demonstrated that in a model of cholestasis, serum bile acids gain entry into the brain via a leaky blood brain barrier and that hypothalamic bile acid content is increased. Therefore, the aim of the current study was to determine the effects of bile acid signaling on the HPA axis. The data presented show that HPA axis suppression during cholestatic liver injury, specifically circulating corticosterone levels and hypothalamic corticotropin releasing hormone (CRH) expression, can be attenuated by administration of the bile acid sequestrant cholestyramine. Secondly, treatment of hypothalamic neurons with various bile acids suppressed CRH expression and secretion in vitro. However, in vivo HPA axis suppression was only evident after the central injection of the bile acids taurocholic acid or glycochenodeoxycholic acid but not the other bile acids studied. Furthermore, we demonstrate that taurocholic acid and glycochenodeoxycholic acid are exerting their effects on hypothalamic CRH expression after their uptake through the apical sodium-dependent bile acid transporter and subsequent activation of the glucocorticoid receptor. Taken together with previous studies, our data support the hypothesis that during cholestatic liver injury, bile acids gain entry into the brain, are transported into neurons through the apical sodium-dependent bile acid transporter and can activate the glucocorticoid receptor to suppress the HPA axis. These data also lend themselves to the broader hypothesis that bile acids may act as central modulators of hypothalamic peptides that may be altered during liver disease.
Acquired C1 inhibitor (C1-INH) deficiency exposes patients to angioedema recurrences (acquired angioedema [AAE]) mediated by bradykinin pathway activation. C1-INH replacement and specific inhibition of plasma kallikrein with ecallantide have been successful in the treatment of hereditary angioedema (HAE), a more common related disorder. C1-INH replacement has also been used in the treatment of AAE, but because of the underlying mechanism of rapid catabolism, some patients may not respond. As part of preclinical investigation of ecallantide, a potent bradykinin pathway inhibitor, we evaluated three AAE patients treated successfully with that agent. This study was designed to assess ecallantide for treatment of attacks in AAE. Three patients with AAE were treated a total of 12 times with various dosing regimens of ecallantide based on the protocols established for the studies using ecallantide in HAE (Evaluation of DX-88's Effects in Mitigating Angioedema trials). Response to therapy was also based on outcome measures determined by these protocols. Ecallantide effectively relieved symptoms in three patients with various manifestations of AAE over 12 acute episodes. Kallikrein inhibition with ecallantide appears effective in the treatment of AAE and may be an alternative for patients with resistance to C1-INH replacement therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.