DNA double-strand breaks (DSBs) leading to loss of nucleotides in the transcribed region can be lethal. Classical non-homologous end-joining (C-NHEJ) is the dominant pathway for DSB repair (DSBR) in adult mammalian cells. Here we report that during such DSBR, mammalian C-NHEJ proteins form a multiprotein complex with RNA polymerase II and preferentially associate with the transcribed genes after DSB induction. Depletion of C-NHEJ factors significantly abrogates DSBR in transcribed but not in non-transcribed genes. We hypothesized that nascent RNA can serve as a template for restoring the missing sequences, thus allowing error-free DSBR. We indeed found pre-mRNA in the C-NHEJ complex. Finally, when a DSB-containing plasmid with several nucleotides deleted within the E. coli lacZ gene was allowed time to repair in lacZ-expressing mammalian cells, a functional lacZ plasmid could be recovered from control but not C-NHEJ factor-depleted cells, providing important mechanistic insights into C-NHEJ-mediated error-free DSBR of the transcribed genome.
Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by CAG (encoding glutamine) repeat expansion in the Ataxin-3 (ATXN3) gene. We have shown previously that ATXN3-depleted or pathogenic ATXN3-expressing cells abrogate polynucleotide kinase 3′-phosphatase (PNKP) activity. Here, we report that ATXN3 associates with RNA polymerase II (RNAP II) and the classical nonhomologous end-joining (C-NHEJ) proteins, including PNKP, along with nascent RNAs under physiological conditions. Notably, ATXN3 depletion significantly decreased global transcription, repair of transcribed genes, and error-free double-strand break repair of a 3′-phosphate–containing terminally gapped, linearized reporter plasmid. The missing sequence at the terminal break site was restored in the recircularized plasmid in control cells by using the endogenous homologous transcript as a template, indicating ATXN3′s role in PNKP-mediated error-free C-NHEJ. Furthermore, brain extracts from SCA3 patients and mice show significantly lower PNKP activity, elevated p53BP1 level, more abundant strand-breaks in the transcribed genes, and degradation of RNAP II relative to controls. A similar RNAP II degradation is also evident in mutant ATXN3-expressingDrosophilalarval brains and eyes. Importantly, SCA3 phenotype inDrosophilawas completely amenable to PNKP complementation. Hence, salvaging PNKP’s activity can be a promising therapeutic strategy for SCA3.
Hepatic iron is known to regulate insulin signaling pathways and to influence insulin sensitivity in insulin resistance (IR) patients. However, the role of insulin on hepatic iron homeostasis remains unexplored. Here, we report that insulin promotes transferrin-bound iron uptake but shows no influence on non transferrin-bound iron uptake in human hepatic HepG2 cells. As a mechanism we detected increased transferrin receptor-1 (TfR1) expression both at protein and mRNA levels. Unaltered stability of protein and transcript of TfR1 suggested the regulation at transcriptional level that was confirmed by promoter activity. Involvement of transcription factor hypoxia inducible factor-1 (HIF-1) was shown by mutational analyses of the TfR1 promoter region and by electrophoretic mobility shift assay. When HepG2 cells were transfected with specific siRNA targeted to 3'UTR of HIF-1α, the regulatory subunit of HIF-1; insulin-induced TfR1 expression and iron uptake were inhibited. Transfection of cDNA expressing stable form of HIF-1α reversed the increased TfR1 expression and iron uptake. These results suggest a novel role of insulin in hepatic iron uptake by a HIF-1 dependent transcriptional regulation of TfR1.
Ceruloplasmin (Cp), a copper-containing protein, plays a significant role in body iron homeostasis as aceruloplasminemia patients and Cp knock-out mice exhibit iron overload in several tissues including liver and brain. Several other functions as oxidant, as antioxidant, and in nitric oxide metabolism are also attributed to Cp. Despite its role in iron oxidation and other biological oxidation reactions the regulation of Cp by reactive oxygen species (ROS) remains unexplored. Cp is synthesized in liver as a secretory protein and predominantly as a glycosylphosphatidylinositol-anchored membrane-bound form in astroglia. In this study we demonstrated that Cp expression is decreased by an mRNA decay mechanism in response to extracellular (H 2 O 2 ) or intracellular oxidative stress (by mitochondrial chain blockers rotenone or antimycin A) in both hepatic and astroglial cells. The promotion of Cp mRNA decay is conferred by its 3-untranslated region (UTR). When chloramphenicol acetyltransferase (CAT) gene was transfected as a chimera with Cp 3-UTR in hepatic or astroglial cells, in response to either H 2 O 2 , rotenone, or antimycin A, the expression of CAT transcript was decreased, whereas expression of a 3-UTR-less CAT transcript remained unaffected. RNA gel shift assay showed significant reduction in 3-UTR-binding protein complex by ROS in both cell types that was reversed by the antioxidant N-acetylcysteine suggesting that ROS affects RNA-protein complex formation to promote Cp mRNA decay. Our finding is not only the first demonstration of regulation of Cp by ROS by a novel post-transcriptional mechanism but also provides a mechanism of iron deposition in neurodegenerative diseases.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.