Highlights d Genome-wide CRISPR-Cas9 screens in patient-derived glioblastoma stem cells d Identification of regulators of stemness governing glioblastoma stem cell growth d Multiple stress response pathways are genetic vulnerabilities in glioblastoma d Identification of modulators of sensitivity to standard of care chemotherapy
Developmental signal transduction pathways act diversely, with context-dependent roles across systems and disease types. Glioblastomas (GBMs), which are the poorest prognosis primary brain cancers, strongly resemble developmental systems, but these growth processes have not been exploited therapeutically, likely in part due to the extreme cellular and genetic heterogeneity observed in these tumors. The role of Wnt/βcatenin signaling in GBM stem cell (GSC) renewal and fate decisions remains controversial. Here, we report context-specific actions of Wnt/ βcatenin signaling in directing cellular fate specification and renewal. A subset of primary GBM-derived stem cells requires Wnt proteins for self-renewal, and this subset specifically relies on Wnt/βcatenin signaling for enhanced tumor burden in xenograft models. In an orthotopic Wnt reporter model, Wnt hi GBM cells (which exhibit high levels of βcatenin signaling) are a faster-cycling, highly self-renewing stem cell pool. In contrast, Wnt lo cells (with low levels of signaling) are slower cycling and have decreased self-renewing potential. Dual inhibition of Wnt/βcatenin and Notch signaling in GSCs that express high levels of the proneural transcription factor ASCL1 leads to robust neuronal differentiation and inhibits clonogenic potential. Our work identifies new contexts for Wnt modulation for targeting stem cell differentiation and self-renewal in GBM heterogeneity, which deserve further exploration therapeutically.
Chromatin accessibility discriminates stem from mature cell populations, enabling the identification of primitive stem-like cells in primary tumors, such as glioblastoma (GBM) where self-renewing cells driving cancer progression and recurrence are prime targets for therapeutic intervention. We show, using single-cell chromatin accessibility, that primary human GBMs harbor a heterogeneous self-renewing population whose diversity is captured in patient-derived glioblastoma stem cells (GSCs). In-depth characterization of chromatin accessibility in GSCs identifies three GSC states: Reactive, Constructive, and Invasive, each governed by uniquely essential transcription factors and present within GBMs in varying proportions. Orthotopic xenografts reveal that GSC states associate with survival, and identify an invasive GSC signature predictive of low patient survival, in line with the higher invasive properties of Invasive state GSCs compared to Reactive and Constructive GSCs as shown by in vitro and in vivo assays. Our chromatin-driven characterization of GSC states improves prognostic precision and identifies dependencies to guide combination therapies.
SummarySuccessful glioblastoma (GBM) therapies have remained elusive due to limitations in understanding mechanisms of growth and survival of the tumorigenic population. Using CRISPR-Cas9 approaches in patient-derived GBM stem cells to interrogate function of the coding genome, we identify diverse actionable pathways responsible for growth that reveal the gene-essential circuitry of GBM stemness. In particular, we describe the Sox developmental transcription factor family; H3K79 methylation by DOT1L; and ufmylation stress responsiveness programs as essential for GBM stemness. Additionally, we find mechanisms of temozolomide resistance and sensitivity that could lead to combination strategies with this standard of care treatment. By reaching beyond static genome analysis of bulk tumors, with a genome wide functional approach, we dive deep into a broad range of biological processes to provide new understanding of GBM growth and treatment resistance.SignificanceGlioblastoma (GBM) remains an incurable disease despite an increasingly thorough depth of knowledge of the genomic and epigenomic alterations of bulk tumors. Evidence from multiple approaches support that GBM reflects an aberrant developmental hierarchy, with GBM stem cells (GSCs), fueling tumor growth and invasion. The properties of this tumor subpopulation may also in part explain treatment resistance and disease recurrence. Unfortunately, we still have a limited knowledge of the molecular circuitry of these cells and progress has been slow as we have not been able, until recently, to interrogate function at the genome-wide scale. Here, using parallel genome-wide CRISPR-Cas9 screens, we identify the essential genes for GSC growth. Further, by screening in the presence of low and high dose temozolomide, we identify mechanisms of drug resistance and sensitivity. These functional screens in patient derived cells reveal new aspects of GBM biology and identify a diversity of actionable targets such as genes governing stem cell traits, epigenome regulation and the response to stress stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.