For a new product to be successful in today's market, engineers need to identify representative customer needs. One approach to identify representative needs from a large number of needs is Subjective Clustering (SC). A set of clusters obtained from SC is a point estimate of clusters generated by a population of customers. Another approach is to apply Bootstrap (BS) to SC. By applying BS to SC, engineers can draw an inference about population primary clusters. This paper compares the accuracy of estimating population primary clusters using SC and Bootstrap applied to SC (BS-SC). The authors recruited participants to perform the clustering experiments and assumed that these participants consist a population. The authors randomly sampled subsets of participants and evaluated how accurately SC and BS-SC identify population primary clusters. When the sample size is small relative to the population, BS-SC estimated population primary clusters more accurately than SC.
The success of any product in today’s competitive market is dictated by its ability to satisfy the needs of the customers. In this effort, it is important to group similar needs to recognize representative needs, and then identify product requirements that can fulfill these representative needs. One approach to this is to apply Subjective Clustering (SC) to sample data (grouping of customer needs by a sample of customers); however, clusters obtained by SC give only a point estimate of the primary clusters of customer needs by the entire population of customers (population primary clusters). Applying Bootstrap to SC (BS-SC) helps engineers to make inferences on the population primary clusters. In this paper, we randomly pulled out samples of different sizes from both the simulation approach using simulation-generated population data and the empirical approach using experimental population data, and compared the accuracies of SC and BS-SC. Regardless of population sizes, when the sample size was small, BS-SC was more accurate than SC in estimating the population primary clusters. Also, the BS-SC and SC estimates were similar for both simulation and empirical approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.