Cloud computing is the delivery of on‐demand computing resources. Cloud computing has numerous applications in fields of education, social networking, and medicine. But the benefit of cloud for medical purposes is seamless, particularly because of the enormous data generated by the health care industry. This colossal data can be managed through big data analytics, and hidden patterns can be extracted using machine learning procedures. In particular, the latest issue in the medical domain is the prediction of heart diseases, which can be resolved through culmination of machine learning and cloud computing. Hence, an attempt has been made to propose an intelligent decision support model that can aid medical experts in predicting heart disease based on the historical data of patients. Various machine learning algorithms have been implemented on the heart disease dataset to predict accuracy for heart disease. Naïve Bayes has been selected as an effective model because it provides the highest accuracy of 86.42% followed by AdaBoost and boosted tree. Further, these 3 models are being ensembled, which has increased the overall accuracy to 87.91%. The experimental results have also been evaluated using 10,082 instances that clearly validate the maximum accuracy through ensembling and minimum execution time in cloud environment.
In this paper, a text dependent speaker recognition algorithm based on spectrogram is proposed. The spectrograms have been generated using Discrete Fourier Transform for varying frame sizes with 25% and 50% overlap between speech frames. Feature vector extraction has been done by using the row mean vector of the spectrograms. For feature matching, two distance measures, namely Euclidean distance and Manhattan distance have been used. The results have been computed using two databases: a locally created database and CSLU speaker recognition database. The maximum accuracy is 92.52% for an overlap of 50% between speech frames with Manhattan distance as similarity measure.
Turkish Journal of Orthodontics (Turk J Orthod) is an international, scientific, open access periodical published in accordance with independent, unbiased, and double-blinded peer-review principles. The journal is the official publication of Turkish Orthodontic Society and it is published quarterly on March, June, September and December. Turkish Journal of Orthodontics publishes clinical and experimental studies on on all aspects of orthodontics including craniofacial development and growth, reviews on current topics, case reports, editorial comments and letters to the editor that are prepared in accordance with the ethical guidelines. The journal's publication language is English and the Editorial Board encourages submissions from international authors.
Testing is one of the most important phases in the development of any product or software. Various types of software testing exist that have to be done to meet the need of the software. Regression testing is one of the crucial phases of testing where testing of a program is done for the original test build along with the modifications. In this article, various studies proposed by the authors have been analysed focusing on test cases generation and their approach toward web application. A detailed study was conducted on Regression Test Case Generation and its approaches toward web application. From our detailed study, we have found that very few approaches and methodologies have been found that provide the real tool for test case generation. There is a need of an automated regression testing tool to generate the regression test cases directly based on user requirements. These test cases have to be generated and implemented by the tool so that the reduction in the overall effort and cost can be achieved. From our study, we have also found that regression testing for web applications was not investigated much, but in today's scenario web applications are an integral part of our daily life and so that needs to be tested for regression testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.