As of 29 February 2020 there were 79,394 confirmed cases and 2,838 deaths from COVID-19 in mainland China. Of these, 48,557 cases and 2,169 deaths occurred in the epicenter, Wuhan. A key public health priority during the emergence of a novel pathogen is estimating clinical severity, which requires properly adjusting for the case ascertainment rate and the delay between symptoms onset and death. Using public and published information, we estimate that the overall symptomatic case fatality risk (the probability of dying after developing symptoms) of COVID-19 in Wuhan was 1.4% (0.9-2.1%), which is substantially lower than both the corresponding crude or naïve confirmed case fatality risk (2,169/48,557 = 4.5%) and the approximator 1 of deaths/ deaths + recoveries (2,169/2,169 + 17,572 = 11%) as of 29 February 2020. Compared to those aged 30-59 years, those aged below 30 and above 59 years were 0.6 (0.3-1.1) and 5.1 (4.2-6.1) times more likely to die after developing symptoms. The risk of symptomatic infection increased with age (for example, at ~4% per year among adults aged 30-60 years).On 9 January 2020, the novel coronavirus SARS-CoV-2 was officially identified as the cause of the COVID-19 outbreak in Wuhan, China. One of the most critical clinical and public health questions during the emergence of a completely novel pathogen, especially one that could cause a global pandemic, pertains to the spectrum of illness presentation or severity profile. For the patient and clinician, this affects triage and diagnostic decision-making, especially in settings without ready access to laboratory testing or when surge capacity has been exceeded. It also influences therapeutic choice and prognostic expectations. For managers of health services, it is important for rapid forward planning in terms of procurement of supplies, readiness of human resources to staff beds at different intensities of care and generally ensuring the sustainability of the health system through the peak and duration of the epidemic.At the population level, determining the shape and size of the 'clinical iceberg' 2,3 , both above and below the observed threshold (in turn determined by symptomatology, care-seeking behavior and clinical access), is key to understanding the transmission dynamics and interpreting epidemic trajectories. Specifically, delineating the proportion of infections that are clinically unobserved under different circumstances is critical to refining model parameterization. In turn, estimates of both the observed and unobserved infections are essential for informing the development and evaluation of public health strategies, which need to be traded off against economic, social and personal freedom costs. For example, drastic social distancing and mobility restrictions, such as school closures and travel advisories/bans, should only be considered if an accurate estimation
As of February 13, 2020, there have been 59,863 laboratory-confirmed cases of COVID-19 infections in mainland China, including 1,367 deaths. A key public health priority during the emergence of a novel pathogen is estimating clinical severity. Here we estimated the symptomatic case-fatality risk (sCFR; the probability of dying from the infection after developing symptoms) of COVID-19 in Wuhan using public and published information. We estimated that sCFR was 0.5% (0.1%-1.3%), 0.5% (0.2%-1.1%) and 2.7% (1.5%-4.7%) for those aged 15-44, 45-64 and >64 years. The overall sCFR among those aged ≥15 years was 1.4% (0.8%-2.0%). Authors Joseph T Wu and Kathy Leung contributed equally to this work
This household-based survey suggests that the number of excess deaths related to Hurricane Maria in Puerto Rico is more than 70 times the official estimate. (Funded by the Harvard T.H. Chan School of Public Health and others.).
The ongoing coronavirus disease 2019 (COVID-19) pandemic has heightened discussion of the use of mobile phone data in outbreak response. Mobile phone data have been proposed to monitor effectiveness of non-pharmaceutical interventions, to assess potential drivers of spatiotemporal spread, and to support contact tracing efforts. While these data may be an important part of COVID-19 response, their use must be considered alongside a careful understanding of the behaviors and populations they capture. Here, we review the different applications for mobile phone data in guiding and evaluating COVID-19 response, the relevance of these applications for infectious disease transmission and control, and potential sources and implications of selection bias in mobile phone data. We also discuss best practices and potential pitfalls for directly integrating the collection, analysis, and interpretation of these data into public health decision making.
SARS-CoV-2-related mortality and hospitalizations differ substantially between New York City neighborhoods. Mitigation efforts require knowing the extent to which these disparities reflect differences in prevalence and understanding the associated drivers. Here, we report the prevalence of SARS-CoV-2 in New York City boroughs inferred using tests administered to 1,746 pregnant women hospitalized for delivery between March 22nd and May 3rd, 2020. We also assess the relationship between prevalence and commuting-style movements into and out of each borough. Prevalence ranged from 11.3% (95% credible interval [8.9%, 13.9%]) in Manhattan to 26.0% (15.3%, 38.9%) in South Queens, with an estimated city-wide prevalence of 15.6% (13.9%, 17.4%). Prevalence was lowest in boroughs with the greatest reductions in morning movements out of and evening movements into the borough (Pearson R = −0.88 [−0.52, −0.99]). Widespread testing is needed to further specify disparities in prevalence and assess the risk of future outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.