See Eissa and Schevon (doi:) for a scientific commentary on this article.Neurosurgical treatment of focal epilepsy is highly unpredictable in cases where a lesion is not apparent by any imaging modality. Sinha et al. propose a computational approach to predict the outcome of a planned resection prior to surgery and investigate the pathophysiology of epileptic networks to delineate cortical areas crucial for ictogenesis.
BackgroundTemporal lobe surgical resection brings seizure remission in up to 80% of patients, with long-term complete seizure freedom in 41%. However, it is unclear how surgery impacts on the structural white matter network, and how the network changes relate to seizure outcome.MethodsWe used white matter fibre tractography on preoperative diffusion MRI to generate a structural white matter network, and postoperative T1-weighted MRI to retrospectively infer the impact of surgical resection on this network. We then applied graph theory and machine learning to investigate the properties of change between the preoperative and predicted postoperative networks.ResultsTemporal lobe surgery had a modest impact on global network efficiency, despite the disruption caused. This was due to alternative shortest paths in the network leading to widespread increases in betweenness centrality post-surgery. Measurements of network change could retrospectively predict seizure outcomes with 79% accuracy and 65% specificity, which is twice as high as the empirical distribution. Fifteen connections which changed due to surgery were identified as useful for prediction of outcome, eight of which connected to the ipsilateral temporal pole.ConclusionOur results suggest that the use of network change metrics may have clinical value for predicting seizure outcome. This approach could be used to prospectively predict outcomes given a suggested resection mask using preoperative data only.
Epilepsy is a neurological disorder in which patients have recurrent seizures. Seizures occur in conjunction with abnormal electrical brain activity which can be recorded by the electroencephalogram (EEG). Often, this abnormal brain activity consists of high amplitude regular spike-wave oscillations as opposed to low amplitude irregular oscillations in the non-seizure state. Active brain stimulation has been proposed as a method to terminate seizures prematurely, however, a general and widely-applicable approach to optimal stimulation protocols is still lacking. In this study we use a computational model of epileptic spike-wave dynamics to evaluate the effectiveness of a pseudospectral method to simulated seizure abatement. We incorporate brain connectivity derived from magnetic resonance imaging of a subject with idiopathic generalized epilepsy. We find that the pseudospectral method can successfully generate time-varying stimuli that abate simulated seizures, even when including heterogeneous patient specific brain connectivity. The strength of the stimulus required varies in different brain areas. Our results suggest that seizure abatement, modeled as an optimal control problem and solved with the pseudospectral method, offers an attractive approach to treatment for in vivo stimulation techniques. Further, if optimal brain stimulation protocols are to be experimentally successful, then the heterogeneity of cortical connectivity should be accounted for in the development of those protocols and thus more spatially localized solutions may be preferable.
Objective:We assessed pre-operative structural brain networks and clinical characteristics of patients with drug resistant temporal lobe epilepsy (TLE) to identify correlates of post-surgical seizure recurrences.Methods:We examined data from 51 TLE patients who underwent anterior temporal lobe resection (ATLR) and 29 healthy controls. For each patient, using the pre-operative structural, diffusion, and post-operative structural MRI, we generated two networks: ‘pre-surgery’ network and ‘surgically-spared’ network. Standardising these networks with respect to controls, we determined the number of abnormal nodes before surgery and expected to be spared by surgery. We incorporated these 2 abnormality measures and 13 commonly acquired clinical data from each patient in a robust machine learning framework to estimate patient-specific chances of seizures persisting after surgery.Results:Patients with more abnormal nodes had lower chance of complete seizure freedom at 1 year and even if seizure-free at 1 year, were more likely to relapse within five years. The number of abnormal nodes was greater and their locations more widespread in the surgically-spared networks of poor outcome patients than in good outcome patients. We achieved 0.84±0.06 AUC and 0.89±0.09 specificity in predicting unsuccessful seizure outcomes (ILAE3-5) as opposed to complete seizure freedom (ILAE1) at 1 year. Moreover, the model-predicted likelihood of seizure relapse was significantly correlated with the grade of surgical outcome at year-one and associated with relapses up-to five years post-surgery.Conclusion:Node abnormality offers a personalised non-invasive marker, that can be combined with clinical data, to better estimate the chances of seizure freedom at 1 year, and subsequent relapse up to 5 years after ATLR.Classification of evidence:This study provides Class II evidence that node abnormality predicts post-surgical seizure recurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.