The retinal pigment epithelium (RPE) is a highly specialized CNS tissue that plays crucial roles in retinal homeostasis. Age-related morphological changes in the RPE have been associated with retinal degenerative disorders; our understanding of the underlying molecular mechanisms, however, remains incomplete. Here we report on a key role of Klotho (Kl), an aging-suppressor gene, in retinal health and RPE physiology. Kl Ϫ / Ϫ mice show RPE and photoreceptor degeneration, reduced pigment synthesis in the RPE, and impaired phagocytosis of the outer segment of the photoreceptors. Klotho protein (KL) is expressed in primary cultured human RPE, and regulates pigment synthesis by increasing the expression of MITF (microphthalmia transcription factor) and TYR (tyrosinase), two pivotal genes in melanogenesis. Importantly, KL increases phagocytosis in cultured RPE by inducing gene expression of MERTK/AXL/TYRO3. These effects of KL are mediated through cAMP-PKA-dependent phosphorylation of transcription factor CREB. In cultured human RPE, KL increases the L-3,4-dihydroxyphenylalanine synthesis and inhibits vascular endothelial growth factor (VEGF) secretion from basal membrane by inhibiting IGF-1 signaling and VEGF receptor 2 phosphorylation. KL also regulates the expression of stress-related genes in RPE, lowers the production of reactive oxygen species, and thereby, protects RPE from oxidative stress. Together, our results demonstrate a critical function for KL in mouse retinal health in vivo, and a protective role toward human RPE cells in vitro. We conclude that KL is an important regulator of RPE homeostasis, and propose that an age-dependent decline of KL expression may contribute to RPE degeneration and retinal pathology.
MicroRNA 184 (miR-184) is known to play a key role in neurological development and apoptosis and is highly expressed in mouse brain, mouse corneal epithelium, zebrafish lens and human retinal pigment epithelium (RPE). However, the role of miR-184 in RPE is largely unknown. We investigated the role of miR-184 in RPE and its possible implication in age-related macular degeneration (AMD). Proteomic analysis identified the ezrin (EZR) gene as a target of miR-184 in human RPE. EZR is a membrane cytoskeleton crosslinker that is also known to bind to lysosomal-associated membrane protein 1 (LAMP-1) during the formation of phagocytic vacuoles. In adult retinal pigment epithelium 19 (ARPE19) cells, inhibition of miR-184 resulted in upregulation of EZR mRNA and EZR protein, and induced downregulation of LAMP-1. The inhibition of miR-184 decreased EZR-bound LAMP-1 protein levels and affected phagocytic activity in ARPE19 cells. In primary culture of human RPE isolated from eyes of AMD donors (AMD RPE), miR-184 was significantly downregulated compared with control (normal) RPE. Downregulation of miR-184 was consistent with significantly lower levels of LAMP-1 protein in AMD RPE, and overexpression of MIR-184 in AMD RPE was able to rescue LAMP-1 protein expression to normal levels. Altogether, these observations suggest a novel role for miR-184 in RPE health and support a model proposing that downregulation of miR-184 expression during aging may result in dysregulation of RPE function, contributing to retinal degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.