Abstract-Spatial clustering is an important component of spatial data analysis which aims in identifying the boundaries of domains and their number. It is commonly used in disease surveillance, spatial epidemiology, population genetics, landscape ecology, crime analysis and many other fields. In this paper, we focus on identifying homogeneous sub-regions in binary data, which indicate the presence or absence of a certain plant species which are observed over a two-dimensional lattice. To solve this clustering problem we propose to use the change-point methodology. We develop new methods based on a binary segmentation algorithm, which is a well-known multiple change-point detection method. The proposed algorithms are applied to artificially generated data to illustrate their usefulness. Our results show that the proposed methodologies are effective in identifying multiple domains and their boundaries in two dimensional spatial data.
Spatial data are very often heterogeneous, which indicates that there may not be a unique simple statistical model describing the data. To overcome this issue, the data can be segmented into a number of homogeneous regions (or domains). Identifying these domains is one of the important problems in spatial data analysis. Spatial segmentation is used in many different fields including epidemiology, criminology, ecology, and economics. To solve this clustering problem, we propose to use the change-point methodology. In this paper, we develop a new spatial segmentation algorithm within the framework of the generalized Gibbs sampler. We estimate the average surface profile of binary spatial data observed over a two-dimensional regular lattice. We illustrate the performance of the proposed algorithm with examples using artificially generated and real data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.