Identifying a bona fide population of cardiac stem cells (CSCs) is a critical step for developing cell-based therapies for heart failure patients. Previously, cardiac c-kit+ cells were reported to be CSCs with a potential to become myocardial, endothelial and smooth muscle cells in vitro and after cardiac injury. Here we provide further insights into the nature of cardiac c-kit+ cells. By targeting the c-kit locus with multiple reporter genes in mice, we find that c-kit expression rarely co-localizes with the expression of the cardiac progenitor and myogenic marker Nkx2.5, or that of the myocardial marker, cardiac troponin T (cTnT). Instead, c-kit predominantly labels a cardiac endothelial cell population in developing and adult hearts. After acute cardiac injury, c-kit+ cells retain their endothelial identity and do not become myogenic progenitors or cardiomyocytes. Thus, our work strongly suggests that c-kit+ cells in the murine heart are endothelial cells and not CSCs.
Modified mRNA (modRNA) is a new technology in the field of somatic gene transfer that has been used for the delivery of genes into different tissues, including the heart. Our group and others have shown that modRNAs injected into the heart are robustly translated into the encoded protein and can potentially improve outcome in heart injury models. However, the optimal compositions of the modRNA and the reagents necessary to achieve optimal expression in the heart have not been characterized yet. In this study, our aim was to elucidate those parameters by testing different nucleotide modifications, modRNA doses, and transfection reagents both in vitro and in vivo in cardiac cells and tissue. Our results indicate that optimal cardiac delivery of modRNA is with N1-Methylpseudouridine-5'-Triphosphate nucleotide modification and achieved using 0.013 μg modRNA/mm/500 cardiomyocytes (CMs) transfected with positively charged transfection reagent in vitro and 100 μg/mouse heart (1.6 μg modRNA/μL in 60 μL total) sucrose-citrate buffer in vivo. We have optimized the conditions for cardiac delivery of modRNA in vitro and in vivo. Using the described methods and conditions may allow for successful gene delivery using modRNA in various models of cardiovascular disease.
Background Epicardial adipose tissue (EAT) volume and coronary artery disease are strongly associated, even after accounting for overall body mass. Despite its pathophysiological significance, the origin and paracrine signaling pathways that regulate EAT’s formation and expansion are unclear. Methods We used a novel modified mRNA (modRNA)-based screening approach to probe the effect of individual paracrine factors on epicardial progenitors in the adult heart. Results Using two independent lineage tracing strategies in murine models, we show that cells originating from the Wt1+ mesothelial lineage, which includes epicardial cells, differentiate into EAT following myocardial infarction (MI). This differentiation process required Wt1 expression in this lineage and was stimulated by insulin-like growth factor 1 receptor (IGF1R) activation. IGF1R inhibition within this lineage significantly reduced its adipogenic differentiation, in the context of exogenous, IGF1 modRNA stimulation. Moreover, IGF1R inhibition significantly reduced Wt1-lineage cell differentiation into adipocytes after MI. Conclusions Our results establish IGF1R signaling as a key pathway that governs EAT formation in the context of myocardial injury by redirecting the fate of Wt1+ lineage cells. Our study also demonstrates the power of modRNA-based paracrine factor library screening to dissect signaling pathways that govern progenitor cell activity in homeostasis and disease.
Background: Sphingolipids have recently emerged as a biomarker of recurrence and mortality after myocardial infarction (MI). The increased ceramide levels in mammalian heart tissues during acute MI, as demonstrated by several groups, is associated with higher cell death rates in the left ventricle and deteriorated cardiac function. Ceramidase, the only enzyme known to hydrolyze proapoptotic ceramide, generates sphingosine, which is then phosphorylated by sphingosine kinase to produce the prosurvival molecule sphingosine-1-phosphate. We hypothesized that Acid Ceramidase (AC) overexpression would counteract the negative effects of elevated ceramide and promote cell survival, thereby providing cardioprotection after MI. Methods: We performed transcriptomic, sphingolipid, and protein analyses to evaluate sphingolipid metabolism and signaling post-MI. We investigated the effect of altering ceramide metabolism through a loss (chemical inhibitors) or gain (modified mRNA [modRNA]) of AC function post hypoxia or MI. Results: We found that several genes involved in de novo ceramide synthesis were upregulated and that ceramide (C16, C20, C20:1, and C24) levels had significantly increased 24 hours after MI. AC inhibition after hypoxia or MI resulted in reduced AC activity and increased cell death. By contrast, enhancing AC activity via AC modRNA treatment increased cell survival after hypoxia or MI. AC modRNA-treated mice had significantly better heart function, longer survival, and smaller scar size than control mice 28 days post-MI. We attributed the improvement in heart function post-MI after AC modRNA delivery to decreased ceramide levels, lower cell death rates, and changes in the composition of the immune cell population in the left ventricle manifested by lowered abundance of proinflammatory detrimental neutrophils. Conclusions: Our findings suggest that transiently altering sphingolipid metabolism through AC overexpression is sufficient and necessary to induce cardioprotection post-MI, thereby highlighting the therapeutic potential of AC modRNA in ischemic heart disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.