Non-invasive, molecularly-specific, focal modulation of brain circuits with low off-target effects can lead to breakthroughs in treatments of brain disorders. We systemically inject engineered ultrasound-controllable drug carriers and subsequently apply a novel two-component Aggregation and Uncaging Focused Ultrasound Sequence (AU-FUS) at the desired targets inside the brain. The first sequence aggregates drug carriers with millimeter-precision by orders of magnitude. The second sequence uncages the carrier’s cargo locally to achieve high target specificity without compromising the blood-brain barrier (BBB). Upon release from the carriers, drugs locally cross the intact BBB. We show circuit-specific manipulation of sensory signaling in motor cortex in rats by locally concentrating and releasing a GABAA receptor agonist from ultrasound-controlled carriers. Our approach uses orders of magnitude (1300x) less drug than is otherwise required by systemic injection and requires very low ultrasound pressures (20-fold below FDA safety limits for diagnostic imaging). We show that the BBB remains intact using passive cavitation detection (PCD), MRI-contrast agents and, importantly, also by sensitive fluorescent dye extravasation and immunohistochemistry.
The hybrids of single-walled carbon nanotube (SWCNT) and single stranded DNA (ssDNA) are novel nanoscale materials having remarkable applications in nanotechnology. The absorption of nucleobases on the surface of a SWCNT depends strongly on the ionic strength of the medium. In this paper, using atomistic molecular dynamics we have shown that at low salt concentration ssDNA wraps on the surface of SWCNT through hydrophobic π-π stacking between the DNA bases and the sp(2)-hybridized carbon atoms of the carbon nanotube. At high salt concentration, however, the DNA molecule adopts a partially folded structure and the ssDNA-SWCNT wrapping gets weakened significantly due to the self-stacking of the DNA bases. Our study can find relevance in CNT mediated gene delivery processes where subsequent unwrapping of the gene from its carrier is anticipated across the cell membrane regulated by an existing salt concentration gradient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.