Biomaterials form the basis of current and future biomedical technologies. They are routinely used to design therapeutic carriers, such as nanoparticles, for applications in drug delivery. Current strategies for synthesizing drug delivery carriers are based either on discovery of materials or development of fabrication methods. While synthetic carriers have brought upon numerous advances in drug delivery, they fail to match the sophistication exhibited by innate biological entities. In particular, red blood cells (RBCs), the most ubiquitous cell type in the human blood, constitute highly specialized entities with unique shape, size, mechanical flexibility, and material composition, all of which are optimized for extraordinary biological performance. Inspired by this natural example, we synthesized particles that mimic the key structural and functional features of RBCs. Similar to their natural counterparts, RBC-mimicking particles described here possess the ability to carry oxygen and flow through capillaries smaller than their own diameter. Further, they can also encapsulate drugs and imaging agents. These particles provide a paradigm for the design of drug delivery and imaging carriers, because they combine the functionality of natural RBCs with the broad applicability and versatility of synthetic drug delivery particles.biomimetic ͉ drug delivery ͉ erythrocyte ͉ imaging ͉ nanotechnology
Recognition by macrophages is a key process in generating immune response against invading pathogens. Previous studies have focused on recognition of pathogens through surface receptors present on the macrophage's surface. Here, using polymeric particles of different geometries that represent the size and shape range of a variety of bacteria, the importance of target geometry in recognition was investigated. The studies reported here reveal that attachment of particles of different geometries to macrophages exhibits a strong dependence on size and shape. For all sizes and shapes studied, particles possessing the longest dimension in the range of 2–3 µm exhibited highest attachment. This also happens to be the size range of most commonly found bacteria in nature. The surface features of macrophages, in particular the membrane ruffles, might play an important role in this geometry-based target recognition by macrophages. These findings have significant implications in understanding the pathogenicity of bacteria and in designing drug delivery carriers.
Development of novel carriers and optimization of their design parameters has led to significant advances in the field of targeted drug delivery. Since carrier shape has recently been recognized as an important design parameter for drug delivery, we sought to investigate how carrier shape influences their flow in the vasculature and their ability to target the diseased site. Idealized synthetic microvascular networks (SMNs) were used for this purpose since they closely mimic key physical aspects of real vasculature and at the same time offer practical advantages in terms of ease of use and direct observation of particle flow. The attachment propensities of surface functionalized spheres, elliptical/circular disks and rods with dimensions ranging from 1 µm to 20 µm were compared by flowing them through bifurcating SMNs. Particles of different geometries exhibited remarkably different adhesion propensities. Moreover, introduction of a bifurcation as opposed to the commonly used linear channel resulted in significantly different flow and adhesion behavior, which may have important implications in correlating these results to in vivo behavior. This study provides valuable information for design of carriers for targeted drug delivery.
An effective approach to separating shaped particles is needed to isolate disease-causing cells for diagnostics or to aid in purifying nonspherical particles in applications ranging from food science to drug delivery. However, the separation of shaped particles is generally challenging, since nonspherical particles can freely rotate and present different faces while being sorted. We experimentally and numerically show that inertial fluid-dynamic effects allow for shape-dependent separation of flowing particles. (Spheres and rods with aspect ratios of 3:1 and 5:1 have all been separable.) Particle rotation around a conserved axis following Jeffery orbits is found to be a necessary component in producing different equilibrium positions across the channel that depend on particle rotational diameter. These differences are large enough to enable passive, continuous, high-purity, high-throughput, and shape-based separation downstream. Furthermore, we show that this shape-based separation can be applied to a large range of particle sizes and types, including small, artificially made 3-m particles as well as bioparticles such as yeast. This practical approach for sorting particles by a previously inaccessible geometric parameter opens up a new capability that should find use in a range of fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.