Methyl nicotinate (MN) is an important tuberculosis biomarker, and can be effectively measured using electrochemical methods. In this study, we have developed a novel N-doped phenolic polymer nanocomposite in situ dispersed with reduced graphene oxide and cobalt (Co)-nanoparticles as a sensor electrode (Co-rGO/PC). Co-nanoparticles were used for the MN recognition. Carbonization was performed for the reduction of GO and the synthesis of Co-nanoparticles. The prepared electrode materials were characterized using SEM, EDS, EIS, and CV. Tested using differential pulse voltammetry, Co-rGO/PC showed its pplicability (RSD < 6%) over 0.05–20.0 mg L−1 MN concentration with high sensitivity (S/N ratio = 3). The present method and materials can also be used for the development of sensors for the other biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.