The plasma membrane (PM) is possibly the most diverse biological membrane of plant cells; it separates and guards the cell against its external environment. It has an extremely complex structure comprising a mosaic of lipids and proteins. The PM lipids are responsible for maintaining fluidity, permeability and integrity of the membrane and also influence the functioning of membrane proteins. However, the PM is the primary target of environmental stress, which affects its composition, conformation and properties, thereby disturbing the cellular homeostasis. Maintenance of integrity and fluidity of the PM is a prerequisite for ensuring the survival of plants during adverse environmental conditions. The ability of plants to remodel membrane lipid and protein composition plays a crucial role in adaptation towards varying abiotic environmental cues, including high or low temperature, drought, salinity and heavy metals stress. The dynamic changes in lipid composition affect the functioning of membrane transporters and ultimately regulate the physical properties of the membrane. Plant membrane‐transport systems play a significant role in stress adaptation by cooperating with the membrane lipidome to maintain the membrane integrity under stressful conditions. The present review provides a holistic view of stress responses and adaptations in plants, especially the changes in the lipidome and proteome of PM under individual or combined abiotic stresses, which cause alterations in the activity of membrane transporters and modifies the fluidity of the PM. The tools to study the varying lipidome and proteome of the PM are also discussed.
Sorghum is one of the staple crops for millions of people in Sub-Saharan Africa (SSA) and South Asia (SA). The future climate in these sorghum production regions is likely to have unexpected short or long episodes of drought and/or high temperature (HT), which can cause significant yield losses. Therefore, to achieve food and nutritional security, drought and HT stress tolerance ability in sorghum must be genetically improved. Drought tolerance mechanism, stay green, and grain yield under stress has been widely studied. However, novel traits associated with drought (restricted transpiration and root architecture) need to be explored and utilized in breeding. In sorghum, knowledge on the traits associated with HT tolerance is limited. Heat shock transcription factors, dehydrins, and genes associated with hormones such as auxin, ethylene, and abscisic acid and compatible solutes are involved in drought stress modulation. In contrast, our understanding of HT tolerance at the omic level is limited and needs attention. Breeding programs have exploited limited traits with narrow genetic and genomic resources to develop drought or heat tolerant lines. Reproductive stages of sorghum are relatively more sensitive to stress compared to vegetative stages. Therefore, breeding should incorporate appropriate pre-flowering and post-flowering tolerance in a broad genetic base population and in heterotic hybrid breeding pipelines. Currently, more than 240 QTLs are reported for drought tolerance-associated traits in sorghum prospecting discovery of trait markers. Identifying traits and better understanding of physiological and genetic mechanisms and quantification of genetic variability for these traits may enhance HT tolerance. Drought and HT tolerance can be improved by better understanding mechanisms associated with tolerance and screening large germplasm collections to identify tolerant lines and incorporation of those traits into elite breeding lines. Systems approaches help in identifying the best donors of tolerance to be incorporated in the SSA and SA sorghum breeding programs. Integrated breeding with use of high-throughput precision phenomics and genomics can deliver a range of drought and HT tolerant genotypes that can improve yield and resilience of sorghum under drought and HT stresses.
OsCYP2-P is an active cyclophilin (having peptidyl-prolyl cis/trans-isomerase activity, PPIase) isolated from the wild rice Pokkali having a natural capacity to grow and yield seeds in coastal saline regions of India. Transcript abundance analysis in rice seedlings showed the gene is inducible by multiple stresses, including salinity, drought, high temperature, and heavy metals. To dissect the role of OsCYP2-P gene in stress response, we raised overexpression (OE) and knockdown (KD) transgenic rice plants with >2-3 folds higher and approximately 2-fold lower PPIase activity, respectively. Plants overexpressing this gene had more favorable physiological and biochemical parameters (K + /Na + ratio, electrolytic leakage, membrane damage, antioxidant enzymes) than wild type, and the reverse was observed in plants that were knocked down for this gene.We propose that OsCYP2-P contributes to stress tolerance via maintenance of ion homeostasis and thus prevents toxic cellular ion buildup and membrane damage. OE plants were found to have a higher harvest index and higher number of filled grains under salinity and drought stress than wild type. OsCYP2-P interacts with calmodulin, indicating it functions via the Ca-CaM pathway. Compared to the WT, the germinating OE seeds exhibited a substantially higher auxin level, and this hormone was below the detection limits in the WT and KD lines. These observations strongly indicate that OsCyp2-P affects the signaling and transport of auxin in rice. | INTRODUCTIONExposure to abiotic stresses such as salinity and drought affects growth, development, and, subsequently, the yield of crop plants
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.