As the integration of large-scale wind energy is increasing into the electricity grids, the role of wind energy suppliers should be investigated as a price-maker as their participation would influence the locational marginal price (LMP) of electricity. The existing bidding strategies for a wind energy supplier faces limitations with respect to the potential cooperation, other competitors’ bidding behavior, network loss, and uncertainty of wind production (WP) and balancing market price (BMP). Hence, to solve these problems, a novel bidding strategy (BS) for a wind power supplier as a price-maker has been proposed in this paper. The new algorithm, called the evolutionary game approach (EGA) inspired hybrid particle swarm optimization and improved firefly algorithm (HPSOIFA), has been proposed to handle the bidding issue. The bidding behavior of power suppliers, including conventional power suppliers, has been encoded as one species to obtain the equilibrium where the EGA can explore dynamically reasonable behavior changes of the opponents. Each species of behavior change has been exploited by the HPSOIFA to improve the optimization solutions. Moreover, a deep learning algorithm, namely deep belief network, has been implemented for improving the accuracy of the forecasting results considering the WP and BMP, and the uncertainty revealed in the WP and BMP has been modeled by quantile regression (QR). Finally, the Shapley value (SV) has been calculated to estimate the benefits of cooperative power suppliers. The presented case studies have verified that the proposed algorithm and the established bidding strategy exhibit higher effectiveness.
Many performance analyses are already done with a lot of flaws. But, they do not look to all influenced constraints. In this study, we aim to summarize several parameters into 90 different scenarios with an average of 1350 simulated files. That shows results of three performance metrics combined with five mobile ad hoc routing protocols under three synthetic mobility models. All these parameters are applied to two dissimilar simulation areas. Basing on one exhaustive analysis with all these details like this paper; leads to well understand the accurate behaviors of routing protocols and mobility models used. By displaying the ability of every routing protocol to deal with some topology changes, as well as to ensure network performances.
This paper analyzes the most relevant spatial-temporal stochastic properties of benchmark synthetic mobility models. Each pattern suffers from various mobility flaws, as will be shown by the models' validation. A set of metrics is used to describe mobility features, such as the speed decay problem, the density wave phenomenon, the spatial node distribution, and the average neighbor percentage. These metrics have already been validated for the random waypoint mobility model (RWPMM), but they have not yet been verified for other mobility patterns that are most frequently used. For this reason, this investigation attempts to deeply validate those metrics for other mobility models, namely the Manhattan Grid mobility, the Reference Point Group mobility, the Nomadic Community mobility, the Self-Similar Least Action Walk, and SMOOTH models. Moreover, we propose a novel mobility metric named the "node neighbors range". The relevance of this new metric is that it proves at once the set of outcomes of previous metrics. It offers a global view of the overall range of mobile neighbors during the experimental time. The current research aims to more rigorously understand mobility features in order to conduct a precise assessment of each mobility flaw, given that this fact further impacts the performance of the whole network. These validations aim to summarize several parameters into 18,126 different scenarios with an average of 486 validated files. An exhaustive analysis with details like those found in this paper leads to a good understanding of the accurate behaviors of mobility models by displaying the ability of every pattern to deal with certain topology changes, as well as to ensure network performances. Validation results confirm the effectiveness and robustness of our novel metric.
Mobility trace techniques makes possible drawing the behaviors of real-life movement which shape wireless networks mobility whereabouts. In our investigation, several trace mobility models have been collected after the devices' deployment. The main issue of this classical procedure is that it produces uncompleted records due to several unpredictable problems occurring during the deployment phase. In this paper, we propose a new procedure aimed at collecting traces while deployment phase failures are avoided, which improves the reliability of data. The introduced procedure makes possible the complete generation of traces with a minimum amount of damage without the need to recover mobile devices or lose them, as it is the case in previous mobility traces techniques. Based on detecting and correcting all accidental issues in real time, the proposed trace scanning offers a set of relevant information about the vehicle status which was collected during seven months. Furthermore, the proposed procedure could be applied to generate vehicular traces. Likewise, it is suitable to record/generate human and animal traces. The research outcomes demonstrate the effectiveness and robustness of the smart collection algorithm based on the proposed trace mobility model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.