The freshwater Lake Kinneret (Sea of Galilee) and the hypersaline Dead Sea are remnant lakes, evolved from ancient water bodies that filled the tectonic depressions along the Dead Sea Transform (DST) during the Neogene–Quartenary periods. We reconstructed the limnological history (level and composition) of Lake Kinneret during the past ∼40,000 years and compared it with the history of the contemporaneous Lake Lisan from the aspect of the regional and global climate history. The lake level reconstruction was achieved through a chronological and sedimentological investigation of exposed sedimentary sections in the Kinnarot basin trenches and cores drilled at the Ohalo II archeological site. Shoreline chronology was established by radiocarbon dating of organic remains and of Melanopsis shells.The major changes in Lake Kinneret level were synchronous with those of the southern Lake Lisan. Both lakes dropped significantly ∼42,000, ∼30,000, 23,800, and 13,000 yr ago and rose ∼39,000, 26,000, 5000, and 1600 yr ago. Between 26,000 and 24,000 yr ago, the lakes merged into a unified water body and lake level achieved its maximum stand of ∼170 m below mean sea level (m bsl). Nevertheless, the fresh and saline water properties of Lake Kinneret and Lake Lisan, respectively, have been preserved throughout the 40,000 years studied. Calcium carbonate was always deposited as calcite in Lake Kinneret and as aragonite in Lake Lisan–Dead Sea, indicating that the Dead Sea brine (which supports aragonite production) never reached or affected Lake Kinneret, even during the period of lake high stand and convergence. The synchronous level fluctuation of lakes Kinneret, Lisan, and the Holocene Dead Sea is consistent with the dominance of the Atlantic–Mediterranean rain system on the catchment of the basin and the regional hydrology. The major drops in Lake Kinneret–Lisan levels coincide with the timing of cold spells in the North Atlantic that caused a shut down of rains in the East Mediterranean and the lakes drainage area.
Archaeology, history, and geology of the A.D. 749 earthquake, Dead Sea Email alerting services cite this article to receive free e-mail alerts when new articles www.gsapubs.org/cgi/alerts click Subscribe to subscribe to Geology www.gsapubs.org/subscriptions/ click Permission request to contact GSA http://www.geosociety.org/pubs/copyrt.htm#gsa click viewpoint. Opinions presented in this publication do not reflect official positions of the Society. positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political article's full citation. GSA provides this and other forums for the presentation of diverse opinions and articles on their own or their organization's Web site providing the posting includes a reference to the science. This file may not be posted to any Web site, but authors may post the abstracts only of their unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make GSA, employment. Individual scientists are hereby granted permission, without fees or further requests to
Reconstruction of the Lake Kinneret level curve for the past 6000 years reveals several rises and declines that are simultaneous with similar but more enhanced changes in the Holocene Dead Sea. A significant departure from this pattern is revealed by the sedimentary section at the Roman-to-Early Arabic archeological site of Galei Kinneret (in Tiberias). Beach sediments overlying the buildings of the Early Arabic (Ummayad) period suggest a lake rise (to 208 m below mean sea level) at ~700 CE, which contradicts the significant low stand observed in the Dead Sea at the same time, between 600 CE and about 1000 CE. An alternative explanation for the lake sediments above the Arabic structure could be a tectonic subsidence of the local shoreline. Prominent faults that cross the Galei Kinneret site on its eastern side are probably responsible for the cracking and sinking of the Herodian stadium wall. Assuming that the Roman stadium was built above the high-stand level of the Roman time (>208 m bmsl), it appears that the tectonic subsidence of the Roman-Ummayad structures was more than 4 m. We speculate that such a tectonic subsidence could also be responsible for the disappearance of the Roman harbor of Tiberias.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.