Fluorogenic assays have many potential advantages over traditional clot-based and chromogenic assays such as the absence of interference from a range of factor deficiencies as well as offering the possibility of assays in platelet rich plasma or whole blood. A fluorogenic anti-factor Xa (anti-FXa) assay has been developed for the determination of heparin-like anticoagulants including unfractionated heparin (UFH), low-molecular weight heparins (LMWHs), namely enoxaparin and tinzaparin, and the synthetic heparinoid danaparoid, in commercial human pooled plasma. The assay was based on the complexation of heparinspiked plasmas with exogenous FXa at a concentration of 4 nM in the presence of 0.9 µM of the fluorogenic substrate methylsulfonyl-D-cyclohexylalanyl-glycyl-arginine-7-amino-4-methylcoumarin acetate (Pefafluor FXa). Pooled plasma samples were spiked with concentrations of anticoagulants in the range 0 to 1.6 U/ml. The assay was capable of the measurement of UFH and danaparoid in the range 0-1 U/ml, and enoxaparin and tinzaparin in the range 0-0.8 U/ml and 0-0.6 U/ml, respectively. Assay percentage coefficients of variation were typically below 7 %.3
This review discusses the role of the cannabinoid system in cartilage tissue and endeavors to establish if targeting the cannabinoid system has potential in mesenchymal stem cell based tissue-engineered cartilage repair strategies. The review discusses the potential of cannabinoids to protect against the degradation of cartilage in inflamed arthritic joints and the influence of cannabinoids on the chondrocyte precursors, mesenchymal stem cells (MSCs). We provide experimental evidence to show that activation of the cannabinoid system enhances the survival, migration and chondrogenic differentiation of MSCs, which are three major tenets behind the success of a cell-based tissue-engineered cartilage repair strategy. These findings highlight the potential for cannabinoids to provide a dual function by acting as anti-inflammatory agents as well as regulators of MSC biology in order to enhance tissue engineering strategies aimed at cartilage repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.