BackgroundDuchenne Muscular Dystrophy (DMD) is characterized by increased muscle damage and an abnormal blood flow after muscle contraction: the state of functional ischemia. Until now, however, the cause-effect relationship between the pathogenesis of DMD and functional ischemia was unclear. We examined (i) whether functional ischemia is necessary to cause contraction-induced myofiber damage and (ii) whether functional ischemia alone is sufficient to induce the damage.Methodology/Principal Findings In vivo microscopy was used to document assays developed to measure intramuscular red blood cell flux, to quantify the amount of vasodilatory molecules produced from myofibers, and to determine the extent of myofiber damage. Reversal of functional ischemia via pharmacological manipulation prevented contraction-induced myofiber damage in mdx mice, the murine equivalent of DMD. This result indicates that functional ischemia is required for, and thus an essential cause of, muscle damage in mdx mice. Next, to determine whether functional ischemia alone is enough to explain the disease, the extent of ischemia and the amount of myofiber damage were compared both in control and mdx mice. In control mice, functional ischemia alone was found insufficient to cause a similar degree of myofiber damage observed in mdx mice. Additional mechanisms are likely contributing to cause more severe myofiber damage in mdx mice, suggestive of the existence of a “two-hit” mechanism in the pathogenesis of this disease.Conclusions/SignificanceEvidence was provided supporting the essential role of functional ischemia in contraction-induced myofiber damage in mdx mice. Furthermore, the first quantitative evidence for the “two-hit” mechanism in this disease was documented. Significantly, the vasoactive drug tadalafil, a phosphodiesterase 5 inhibitor, administered to mdx mice ameliorated muscle damage.
Dying cells are distinguished by their biochemical and morphologic traits and categorized into three subtypes: apoptosis, oncosis (necrosis), and cell death with autophagy. Each of these types of cell death plays critical roles in tissue morphogenesis during normal development and in the pathogenesis of human diseases. Given that tissue homeostasis is controlled by the intricate balance between degeneration and regeneration, it is essential to understand the mechanisms of different forms of cell death to establish and improve therapeutic interventions for prevention and rescue of these cell death-related disorders. Critical illness, including sepsis, trauma, and burn injury, is often complicated by multiple organ dysfunction syndrome and is accompanied by increased cell death in parenchymal and nonparenchymal tissues. Accumulating evidence suggests that augmented cell death plays an important role in the organ failure in critical illness. We discuss possible therapeutic approaches for prevention of cell death, particularly apoptotic cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.