In spite of devastating impact of mosquito borne pathogens on humans, widespread resistance to chemical insecticides and environmental concerns from residual toxicity limit mosquito control strategies. We tested three nanoparticles, chitosan, carbon quantum dot (CQD), and silica complexed with dsRNA, to target two mosquito genes (SNF7 and SRC) for controlling Aedes aegypti larvae. Relative mRNA levels were quantified using qRT-PCR to evaluate knockdown efficiency in nanoparticle-dsRNA treated larvae. The knockdown efficiency of target genes correlated with dsRNA mediated larval mortality. Among the three nanoparticles tested, CQD was the most efficient carrier for dsRNA retention, delivery, and thereby causing gene silencing and mortality in Ae. aegypti.
Fumigants and residual insecticides are commonly used to combat stored grain pests. In recent years, consumer awareness of the health hazard from residual toxicity and the growing problem of insect resistance to these conventional insecticides have led the researchers to look for alternative strategies for stored grains protection. For example, diatomaceous earth (DE) can be effective against stored grain insects. In this study, DE was used to design amorphous nano sized hydrophilic, hydrophobic, and lipophilic silica in 15-30 nm size range. Nanocides are expected to reduce the volume of application and kinetics of development of resistance in pests. We hypothesized that surface-functionalized silica nanoparticle (SNP) might be a viable alternative to conventional pesticides. Entomotoxicity of SNP was tested against rice weevil Sitophilus oryzae and its efficacy was compared with bulk-sized silica (individual particles larger than 1 lm). Amorphous SNP was found to be highly effective against this insect pest causing more than 90% mortality, indicating the effectiveness of SNP to control insect pests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.