BackgroundBakanae or foot rot disease caused by Fusarium fujikuroi [teleomorph: Gibberella fujikuroi (Sawada) Ito] is emerging as a serious disease in rice. The disease causes both quantitative and qualitative losses to the grains under the field conditions. Breeding for resistance to Bakanae disease is a promising strategy to manage this emerging disease. In this study, we used a population of 168 F14 recombinant inbred lines (RILs) derived from two indica rice parents Pusa 1342, a highly resistant variety and Pusa Basmati 1121, a highly susceptible variety to map quantitative trait loci (QTLs) governing resistance against Bakanae disease.ResultsThe disease reaction of 168 F14 RILs were measured on the seedlings inoculated using Fusarium fujikuroi culture using high-throughput screening protocol under glasshouse conditions. Utilizing inclusive composite interval mapping, three QTLs governing resistance to Bakanae were identified, namely qBK1.1, qBK1.2 and qBK1.3 which accounted 4.76, 24.74 and 6.49 % of phenotypic variation, respectively. The major effect QTL designated qBK1.2 was mapped in 0.26 Mb region between RM5336 and RM10153. A total of 55 annotated genes were identified within the identified QTL region qBK1.2.ConclusionsThe novel QTLs identified in this study are useful resource for efficiently breeding rice cultivars resistant to Bakanae disease. This is the first report on identification of QTLs governing resistance against Bakanae in rice using inclusive composite interval mapping strategy in a RIL population.
BackgroundIncreased water and labour scarcity in major rice growing areas warrants a shift towards direct seeded rice cultivation under which management of weeds is a major issue. Use of broad spectrum non-selective herbicides is an efficient means to manage weeds. Availability of rice genotypes with complete tolerance against broad-spectrum non-selective herbicides is a pre-requisite for advocating use of such herbicides. In the present study, we developed an EMS induced rice mutant, ‘HTM-N22‘, exhibiting tolerance to a broad spectrum herbicide, ‘Imazethapyr‘, and identified the mutations imparting tolerance to the herbicide.ResultsWe identified a stable and true breeding rice mutant, HTM-N22 (HTM), tolerant to herbicide, Imazethapyr, from an EMS-mutagenized population of approximately 100,000 M2 plants of an upland rice variety, Nagina 22 (N22). Analysis of inheritance of herbicide tolerance in a cross between Pusa 1656-10-61/HTM showed that this trait is governed by a single dominant gene. To identify the causal gene for Imazethapyr tolerance, bulked segregant analysis (BSA) was followed using microsatellite markers flanking the three putative candidate genes viz., an Acetolactate Synthase (ALS) on chromosome 6 and two Acetohydroxy Acid Synthase (AHAS) genes, one on chromosomes 2 and another on chromosome 4. RM 6844 on chromosome 2 located 0.16 Mbp upstream of AHAS (LOC_Os02g30630) was found to co-segregate with herbicide tolerance. Cloning and sequencing of AHAS (LOC_Os02g30630) from the wild type, N22 and the mutant HTM and their comparison with reference Nipponbare sequence revealed several Single Nucleotide Polymorphisms (SNPs) in the mutant, of which eight resulted in non-synonymous mutations. Three of the eight amino acid substitutions were identical to Nipponbare and hence were not considered as causal changes. Of the five putative candidate SNPs, four were novel (at positions 30, 50, 81 and 152) while the remaining one, S627D was a previously reported mutant, known to result in Imidazolinone tolerance in rice. Of the novel ones, G152E was found to alter the hydrophobicty and abolish an N myristoylation site in the HTM compared to the WT, from reference based modeling and motif prediction studies.ConclusionsA novel mutant tolerant to the herbicide “Imazethapyr” was developed and characterized for genetic, sequence and protein level variations. This is a HTM in rice without any IPR (Intellectual Property Rights) infringements and hence can be used in rice breeding as a novel genetic stock by the public funded organizations in the country and elsewhere.Electronic supplementary materialThe online version of this article (doi:10.1186/s12284-017-0151-8) contains supplementary material, which is available to authorized users.
Marker assisted backcross breeding was used to transfer Saltol, a major QtL for seedling stage salinity tolerance from the donor FL478 to Pusa Basmati 1509 (PB 1509), a high yielding and early maturing Basmati rice variety. Foreground selection was carried out using three markers namely, AP3206f, RM3412b and RM10793, linked to Saltol. In addition, 105 genome-wide SSR markers polymorphic between FL478 and PB 1509 were used in background selection. Among the BC 3 f 4 near isogenic lines (NILs) developed, recurrent parent genome recovery ranged from 96.67 to 98.57%. Multi-season evaluation identified some of the NILs showing significantly higher yield with grain and cooking quality comparable to PB 1509. All the NILs exhibited tolerance to salinity with significantly higher relative water content, membrane stability index and proline content as compared to PB 1509. the root and shoot concentration of na + , K + and na + /K + in NILs was at par with FL478 under stress conditions. the gene OsHKT1;5 located in the Saltol region showed higher expression levels under stress indicating its role in conferring salinity tolerance. Salt tolerant NILs of PB 1509 will be useful in stabilizing production in salt affected areas. Rice is highly sensitive to salinity stress at seedling and reproductive stages. The symptoms of salt injury in rice are stunted growth, rolling of leaves, white tips, drying of older leaves and grain sterility. The most common injuries are attributed to the destabilization of the membrane, osmotic imbalance and disruption of photosynthetic mechanism 1,2. Water uptake by rice plant is also hindered due to salt stress which causes leaf damage 3,4. Soil salinity limits the rice plant's growth and development, resulting in yield losses of more than 50% 5. Though salinity affects all stages of the growth and development of the rice plant, its effect on young seedlings is highly detrimental as it directly influences plant establishment, thus affecting yield. With every dS/m increase of electrical conductivity (EC) beyond the threshold salt level of 3.0 dS/m, the rice yield is decreased by 12% which implies a yield reduction up to 50% at EC 7.2 dS/m 6. Therefore, development of varieties with seedling stage salinity tolerance can sustain the production of the crop in salt affected areas by promoting the good initial establishment of plants, leading to healthy vegetative growth that can increase crop yield 7. In India, rice is grown on 44 million ha with an annual production of 110 million tons of milled rice. Basmati is premium quality rice which is grown in ~ 2 million ha across seven states of India which has been earmarked as the Geographical Indication (GI) area for the cultivation 8. Basmati rice is well-known worldwide for its exquisite quality traits, superfine grains, fluffy cooked rice with superior eating quality and pleasant aroma 9. It is a valuable agricultural export commodity, which earned foreign exchange worth US$ 4.72 billion during 2018-2019 10 .
Rice germplasm is a rich resource for discovering genes associated with salt tolerance. In the current study, a set of 96 accessions were evaluated for seedling stage salinity tolerance and its component traits. Significant phenotypic variation was observed among the genotypes for all the measured traits and eleven accessions with high level of salt tolerance at seedling stage were identified. The germplasm set comprised of three sub-populations and genome-wide association study (GWAS) identified a total of 23 marker–trait associations (MTAs) for traits studied. These MTAs were located on rice chromosomes 1, 2, 5, 6, 7, 9, and 12 and explained the trait phenotypic variances ranging from 13.98 to 29.88 %. Twenty-one MTAs identified in this study were located either in or near the previously reported quantitative trait loci (QTLs), while two MTAs namely, qSDW2.1 and qSNC5 were novel. A total of 18 and 13 putative annotated candidate genes were identified in a genomic region spanning ~200 kb around the MTAs qSDW2.1 and qSNC5, respectively. Some of the important genes underlying the novel MTAs were OsFBA1,OsFBL7, and mTERF which are known to be associated with salinity tolerance in crops. These MTAs pave way for combining salinity tolerance with high yield in rice genotypes through molecular breeding.
Background Direct-seeded rice (DSR) is a potential technology for sustainable rice farming as it saves water and labor. However, higher incidence of weed under DSR limits productivity. Therefore, there is a need to develop herbicide tolerant (HT) rice varieties. Results We used marker assisted backcross breeding (MABB) to transfer a mutant allele of Acetohydroxy acid synthase (AHAS) gene, which confers tolerance to imidazolinone group of herbicides from the donor parent (DP) “Robin” into the genetic background of an elite popular Basmati rice variety, Pusa Basmati 1121 (PB 1121). Foreground selection was done using the AHAS gene linked Simple Sequence Repeat (SSR) marker RM6844 and background selection was performed using 112 genome-wide SSR markers polymorphic between PB 1121 and Robin. Phenotypic selection for agronomic, Basmati grain and cooking quality traits in each generation was carried out to improve the recovery of recurrent parent phenome (RPP). Finally, a set of 12 BC4F4 near isogenic lines (NILs), with recurrent parent genome (RPG) recovery ranging from 98.66 to 99.55% were developed and evaluated. PB 1121-HT NILs namely 1979-14-7-33-99-10, 1979-14-7-33-99-15 and 1979-14-7-33-99-66 were found superior to PB 1121 in yield with comparable grain and cooking quality traits and herbicide tolerance similar to Robin. Conclusion Overall, the present study reports successful development of HT NILs in the genetic background of popular Basmati rice variety, PB 1121 by introgression of mutated AHAS allele. This is the first report on the development of HT Basmati rice. Superior NILs are being evaluated in the national Basmati trials, the release of which is likely to provide a viable option for the adoption of DSR technology in Basmati rice cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.