We report for the first time a patient with a mitochondrial citrate carrier deficiency. Our data support a role for citric acid cycle defects in agenesis of corpus callosum as already reported in patients with aconitase or fumarate hydratase deficiency.
Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.
The ATP/GTP-Binding Protein 1 (AGTPBP1) gene (OMIM *606830) catalyzes deglutamylation of polyglutamylated proteins, and its deficiency manifests by cerebellar ataxia and peripheral neuropathy in mice and lower motor neuron-like disease in sheep. In the mutant mice, cerebellar atrophy due to Purkinje cell degeneration is observed, likely due to increased tubulin polyglutamylation in affected brain areas. We report two unrelated individuals who presented with early onset cerebellar atrophy, developmental arrest with progressive muscle weakness, and feeding and respiratory difficulties, accompanied by severe motor neuronopathy. Whole exome sequencing followed by segregation analysis in the families and cDNA studies revealed deleterious biallelic variants in the AGTPBP1 gene. We conclude that complete loss-of-function of AGTPBP1 in humans, just like in mice and sheep, is associated with cerebellar and motor neuron disease, reminiscent of Pontocerebellar Hypoplasia Type 1 (PCH1).
The primary cilium is a key organelle in numerous physiological and developmental processes. Genetic defects in the formation of this non-motile structure, in its maintenance and function, underlie a wide array of ciliopathies in human, including craniofacial, brain and heart malformations, and retinal and hearing defects. We used exome sequencing to study the molecular basis of disease in an 11-year-old female patient who suffered from growth retardation, global developmental delay with absent speech acquisition, agenesis of corpus callosum and paucity of white matter, sensorineural deafness, retinitis pigmentosa, vertebral anomalies, patent ductus arteriosus, and facial dysmorphism reminiscent of STAR syndrome, a suspected ciliopathy. A homozygous variant, c.870_871del, was identified in the CDK10 gene, predicted to cause a frameshift, p.Trp291Alafs*18, in the cyclin-dependent kinase 10 protein. CDK10 mRNAs were detected in patient cells and do not seem to undergo non-sense mediated decay. CDK10 is the binding partner of Cyclin M (CycM) and CDK10/CycM protein kinase regulates ciliogenesis and primary cilium elongation. Notably, CycM gene is mutated in patients with STAR syndrome. Following incubation, the patient cells appeared less elongated and more densely populated than the control cells suggesting that the CDK10 mutation affects the cytoskeleton. Upon starvation and staining with acetylated-tubulin, γ-tubulin, and Arl13b, the patient cells exhibited fewer and shorter cilia than control cells. These findings underscore the importance of CDK10 for the regulation of ciliogenesis. CDK10 defect is likely associated with a new form of ciliopathy phenotype; additional patients may further validate this association.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.