The present study aims to evaluate the efficacy of a novel drug delivery system of the modified rice hydrogel containing praziquantel (PZQ) against Philophthalmus gralli isolated from ostrich eyes and determine the toxicity of the preparation on chicken eye model. The parasiticidal activity of PZQ (0, 1, 10, and 100 µg/mL) was tested on P. gralli. The ophthalmic antiparasitic hydrogel was formulated with appropriate amount of PZQ and chemically modified rice gel. The parasitic morphology after exposure with the preparation was examined under scanning electron microscope (SEM). The anthelminthic efficacy of the preparation on motility and mortality of parasites was performed by visual inspection and vital dye staining. The ocular irritation of the preparation was evaluated for 21 days using standard avian model followed by OECD 405. The results demonstrated that the parasiticidal activity of PZQ against P. gralli appears to be in a concentration- and time-dependent manner. In addition, the concentration of PZQ 10 µg/mL (Chi squared test, p = 0.003) and exposure time for 24 h (log-rank test, p = 0.0004) is sufficient to kill parasites, when statistically compared to negative control group. Rice hydrogel containing a lethal concentration of 10 µg/mL PZQ was successfully prepared. The preparation illustrated good parasitic killing and motile inhibiting effect on P. gralli compared with PZQ 10 µg/mL and its control (p < 0.05). An appearance under SEM of non-viable parasite after being incubated with the preparation, showing parasitic deformity, was observed comparing with the viable parasite in 0.9% normal saline solution (NSS). Moreover, no irritation of chicken eyes was also observed. Our results contribute to understanding the efficacy and the safety of the rice hydrogel of PZQ which have a predictive value for controlling P. gralli on the animal eyes. However, the pharmacological application needs to be further investigated for the best possible therapeutic approach.
This study investigated the sedative effects of dexmedetomidine in Asian elephants. We hypothesized that 2 µg/kg dexmedetomidine would provide sufficient standing sedation. A crossover design study was performed in three Asian elephants. Each elephant was assigned to 1 of 3 treatment groups—1 (D1), 1.5 (D1.5) or 2 (D2) µg/kg dexmedetomidine (intramuscular injection, IM) with a two-week ‘washout period’ between doses. Elephants were monitored for 120 min. At 120 min (Ta), atipamezole was administered IM. Sedation and responsiveness scores were evaluated. Physiological parameters (pulse rate, respiratory rate, and %SpO2) and clinical observations were monitored during the study and for 3 days post drug administration. D2 provided the longest sedation (approximately 70 min), compared to D1 and D1.5. After Ta, each elephant’s sedative stage lessened within 10–15 min without complications. No significant abnormal clinical observations were noted throughout and during the 3-days post study period. These data suggest that a single 2 µg/kg IM dexmedetomidine injection provides sufficient standing sedation for approximately 70 min in Asian elephants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.