Deterministic mathematical models (called Compartmental models) of disease propagation such as the SIR model and its variants (MSIR, Carrier state, SEIR, SEIS, MSEIR, MSEIRS models) are used to study the propagation of COVID19 in a large population with specific reference to India.
The objective of this paper is to study a treatment to social network analysis using the principles of statistical mechanics. After revisiting the popular models and random graph frameworks of complex networks, a formalism to statistical mechanism based on the conventional concepts like phase space, interactions and ensembles is devised. Specific machine learning techniques are employed for the purpose of figuring out the relevant phase-space equations. Thereafter, specific applications of the formalism is explored in the context of business partnership optimization and disease transmission. Several analogues with the statistical mechanics treatment of thermodynamics have also been made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.