In this paper, we present a computationally efficient method for estimating error floors of low-density parity-check (LDPC) codes over the binary symmetric channel (BSC) without any prior knowledge of its trapping sets (TSs). Given the Tanner graph G of a code, and the decoding algorithm D, the method starts from a list of short cycles in G, and expands each cycle by including its sufficiently large neighborhood in G. Variable nodes of the expanded sub-graphs GEXP are then corrupted exhaustively by all possible error patterns, and decoded by D operating on GEXP. Union of support of the error patterns for which D fails on each GEXP defines a subset of variable nodes that is a TS. The knowledge of the minimal error patterns and their strengths in each TSs is used to compute an estimation of the frame error rate. This estimation represents the contribution of error events localized on TSs, and therefore serves as an accurate estimation of the error floor performance of D at low BSC cross-over probabilities. We also discuss trade-offs between accuracy and computational complexity. Our analysis shows that in some cases the proposed method provides a million-fold improvement in computational complexity over standard Monte-Carlo simulation.
Iterative decoders for finite length quantum low-density parity-check (QLDPC) codes are attractive because their hardware complexity scales only linearly with the number of physical qubits. However, they are impacted by short cycles, detrimental graphical configurations known as trapping sets (TSs) present in a code graph as well as symmetric degeneracy of errors. These factors significantly degrade the decoder decoding probability performance and cause so-called error floor. In this paper, we establish a systematic methodology by which one can identify and classify quantum trapping sets (QTSs) according to their topological structure and decoder used. The conventional definition of a TS from classical error correction is generalized to address the syndrome decoding scenario for QLDPC codes. We show that the knowledge of QTSs can be used to design better QLDPC codes and decoders. Frame error rate improvements of two orders of magnitude in the error floor regime are demonstrated for some practical finite-length QLDPC codes without requiring any post-processing.
We introduce a stochastic resonance based decoding paradigm for quantum codes using an error correction circuit made of a combination of noisy and noiseless logic gates. The quantum error correction circuit is based on iterative syndrome decoding of quantum low-density parity check codes, and uses the positive effect of errors in gates to correct errors due to decoherence. We analyze how the proposed stochastic algorithm can escape from short cycle trapping sets present in the dual containing Calderbank, Shor and Steane (CSS) codes. Simulation results show improved performance of the stochastic algorithm over the deterministic decoder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.