van der Waals (vdW) tunnel junctions are attractive because of their atomically sharp interface, gate tunability, and robustness against lattice mismatch between the successive layers. However, the negative differential resistance (NDR) demonstrated in this class of tunnel diodes often exhibits noisy behavior with low peak current density and lacks robustness and repeatability, limiting their practical circuit applications. Here, we propose a strategy of using a 1L-WS2 as an optimum tunnel barrier sandwiched in a broken gap tunnel junction of highly doped black phosphorus (BP) and SnSe2. We achieve high yield tunnel diodes exhibiting highly repeatable, ultraclean, and gate-tunable NDR characteristics with a signature of intrinsic oscillation, and a large peak-to-valley current ratio (PVCR) of 3.6 at 300 K (4.6 at 7 K), making them suitable for practical applications. We show that the thermodynamic stability of the vdW tunnel diode circuit can be tuned from astability to bistability by altering the constraint through choosing a voltage or a current bias, respectively. In the astable mode under voltage bias, we demonstrate a compact, voltage-controlled oscillator without the need for an external tank circuit. In the bistable mode under current bias, we demonstrate a highly scalable, single-element, one-bit memory cell that is promising for dense random access memory applications in memory intensive computation architectures.
Graphene, owing to its zero bandgap electronic structure, is promising as an absorption material for ultra-wideband photodetection applications. However, grapheneabsorption based detectors inherently suffer from poor responsivity due to weak absorption and fast photocarrier recombination, limiting their viability for low intensity light detection. Here we use a graphene/WS 2 /MoS 2 vertical heterojunction to demonstrate a highly sensitive photodetector, where the graphene layer serves dual purpose, namely as the light absorption layer, and also as the carrier conduction channel, thus maintaining the broadband nature of the photodetector. A fraction of the photoelectrons in graphene encounter ultra-fast inter-layer transfer to a floating monolayer MoS 2 quantum well providing strong quantum confined photogating effect. The photodetector shows a responsivity of 4.4 × 10 6 A/W at 30 fW incident power, outperforming photodetectors reported till date where graphene is used as light absorption material by several orders. In addition, the proposed photodetector exhibits an extremely low noise arXiv:1908.06924v1 [physics.app-ph] 19 Aug 2019 equivalent power (NEP ) of < 4 fW/ √ Hz and a fast response (∼ milliseconds) with zero reminiscent photocurrent. The findings are attractive towards the demonstration of graphene-based highly sensitive, fast, broadband photodetection technology.
The effect of on-orbit molecular contamination has the potential to degrade the performance of spaceflight hardware and diminish the lifetime of the spacecraft. For example, sensitive surfaces, such as optical surfaces, electronics, detectors, and thermal control surfaces, are vulnerable to the damaging effects of contamination from outgassed materials. The current solution to protect these surfaces is through the use of zeolite coated ceramic adsorber pucks. However, these pucks and its additional complex mounting hardware requirements result in several disadvantages, such as size, weight, and cost related concerns, that impact the spacecraft design and the integration and test schedule. As a result, a new innovative molecular adsorber coating was developed as a sprayable alternative to mitigate the risk of on-orbit molecular contamination.In this study, the formulation for molecular adsorber coatings was optimized using various binders, pigment treatment methods, binder to pigment ratios, thicknesses, and spray application techniques. The formulas that passed coating adhesion and vacuum thermal cycling were further tested for its adsorptive capacity. Accelerated molecular capacitance tests were performed in an innovatively designed multi-unit system containing idealized contaminant sources. This novel system significantly increased the productivity of the testing phase for the various formulations that were developed. Work performed during the development and testing phases has demonstrated successful application of molecular adsorber coatings onto metallic substrates, as well as, very promising results for the adhesion performance and the molecular capacitance of the coating. Continued testing will assist in the qualification of molecular adsorber coatings for use on future contamination sensitive spaceflight missions.
The gate‐all‐around nanowire transistor, due to its extremely tight electrostatic control and vertical integration capability, is a highly promising candidate for sub‐5 nm technology nodes. In particular, the junctionless nanowire transistors are highly scalable with reduced variability due to avoidance of steep source/drain junction formation by ion implantation. Here a dual‐gated junctionless nanowire p‐type field effect transistor is demonstrated using tellurium nanowire as the channel. The dangling‐bond‐free surface due to the unique helical crystal structure of the nanowire, coupled with an integration of dangling‐bond‐free, high quality hBN gate dielectric, allows for a phonon‐limited field effect hole mobility of 570 cm2 V−1 s−1 at 270 K, which is well above state‐of‐the‐art strained Si hole mobility. By lowering the temperature, the mobility increases to 1390 cm2 V−1 s−1 and becomes primarily limited by Coulomb scattering. The combination of an electron affinity of ≈4 eV and a small bandgap of tellurium provides zero Schottky barrier height for hole injection at the metal‐contact interface, which is remarkable for reduction of contact resistance in a highly scaled transistor. Exploiting these properties, coupled with the dual‐gated operation, we achieve a high drive current of 216 μA μm−1 while maintaining an on‐off ratio in excess of 2 × 104. The findings have intriguing prospects for alternate channel material based next‐generation electronics.
In 1H monolayer transition metal dichalcogenide, the inversion symmetry is broken, while the reflection symmetry is maintained. On the contrary, in the bilayer, the inversion symmetry is restored, but the reflection symmetry is broken. As a consequence of these contrasting symmetries, here we show that bilayer WS 2 exhibits a quantum confined Stark effect (QCSE) that is linear with the applied out-of-plane electric field, in contrary to a quadratic one for a monolayer. The interplay between the unique layer degree of freedom in the bilayer and the field driven partial 1 arXiv:2011.06790v1 [cond-mat.mes-hall] 13 Nov 2020 inter-conversion between intra-layer and inter-layer excitons generates a giant tunability of the exciton oscillator strength. This makes bilayer WS 2 a promising candidate for an atomically thin, tunable electro-absorption modulator at the exciton resonance, particularly when stacked on top of a graphene layer that provides an ultra-fast non-radiative relaxation channel. By tweaking the biasing configuration, we further show that the excitonic response can be largely tuned through electrostatic doping, by efficiently transferring the oscillator strength from neutral to charged exciton. The findings are prospective towards highly tunable, atomically thin, compact and light, on chip, reconfigurable components for next generation optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.