A Disintegrin-like And Metalloproteinase with ThromboSpondin motifs—ADAMTSs—are a multi-domain, secreted, extracellular zinc metalloproteinase family with 19 members in humans. These extracellular metalloproteinases are known to cleave a wide range of substrates in the extracellular matrix. They have been implicated in various physiological processes, such as extracellular matrix turnover, melanoblast development, interdigital web regression, blood coagulation, ovulation, etc. ADAMTSs are also critical in pathological processes such as arthritis, atherosclerosis, cancer, angiogenesis, wound healing, etc. In the past few years, there has been an explosion of reports concerning the role of ADAMTS family members in angiogenesis and cancer. To date, 10 out of the 19 members have been demonstrated to be involved in regulating angiogenesis and/or cancer. The mechanism involved in their regulation of angiogenesis or cancer differs among different members. Both angiogenesis-dependent and -independent regulation of cancer have been reported. This review summarizes our current understanding on the roles of ADAMTS in angiogenesis and cancer and highlights their implications in cancer therapeutic development.
Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application.
The metalloproteinase ADAMTS4 (ADAMTS, a disintegrin-like and metalloproteinase with thrombospondin motif)/aggrecanase-1 is highly expressed in cartilage and has been implicated in human arthritis. Although abundantly expressed in many types of cancer, its role in cancer remains unknown. In this work, we demonstrate for the first time that full-length ADAMTS4 and its catalytically more active N-terminal 53 kDa autocatalytic fragment both promote B16 melanoma growth and angiogenesis in mice. In contrast, overexpression of its catalytically inactive E362A mutant or truncated fragments containing only the C-terminal ancillary domains suppresses melanoma growth and angiogenesis under similar conditions. Structure-function mapping revealed that the single thrombospondin-type 1 repeat domain is essential and sufficient for the antitumorigenic activity displayed by the catalytically inactive ADAMTS4 isoforms. Suppression of tumor growth and angiogenesis in mice is accompanied by a significant increase in tumor cell apoptosis, whereas tumor cell proliferation is not affected. Importantly, we identified and demonstrated the presence of novel proteolytic fragments of ADAMTS4 containing essentially only the C-terminal ancillary domains in cultured cells, and also in human cancer tissues, coexisting with full-length and catalytically active N-terminal fragments. The contrasting functions toward tumor growth in mice by the wild-type proteinase and its catalytically inactive mutant correlate with their contrasting influences on angiogenesis signaling pathway molecules in B16 melanoma in mice. Our results suggest a complex role for ADAMTS4 in cancer with the functional balance of protumorigenic and antitumorigenic isoforms likely to act as an important parameter in determining the net influence of this metalloproteinase on tumor growth in vivo.The ADAMTS (a disintegrin-like and metalloproteinase with thrombospondin motifs) is a family of extracellular metalloproteinases mediating diverse functions including matrix degradation, blood coagulation and angiogenesis.
Apicoplast, an essential organelle of human malaria parasite Plasmodium falciparum contains a ∼35 kb circular genome and is a possible target for therapy. Proteins required for the replication and maintenance of the apicoplast DNA are not clearly known. Here we report the presence of single–stranded DNA binding protein (SSB) in P falciparum. PfSSB is targeted to the apicoplast and it binds to apicoplast DNA. A strong ssDNA binding activity specific to SSB was also detected in P. falciparum lysate. Both the recombinant and endogenous proteins form tetramers and the homology modelling shows the presence of an oligosaccharide/oligonucleotide-binding fold responsible for ssDNA binding. Additionally, we used SSB as a tool to track the mechanism of delayed death phenomena shown by apicoplast targeted drugs ciprofloxacin and tetracycline. We find that the transport of PfSSB is severely affected during the second life cycle following drug treatment. Moreover, the translation of PfSSB protein and not the transcription of PfSSB seem to be down-regulated specifically during second life cycle although there is no considerable change in protein expression profile between drug-treated and untreated parasites. These results suggest dual control of translocation and translation of apicoplast targeted proteins behind the delayed death phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.