In this paper, we focus on the generalized Marcum function of the second kind of order $$\nu >0$$ ν > 0 , defined by $$\begin{aligned} R_{\nu }(a,b)=\frac{c_{a,\nu }}{a^{\nu -1}} \int _b ^ {\infty } t^{\nu } e^{-\frac{t^2+a^2}{2}}K_{\nu -1}(at)\mathrm{d}t, \end{aligned}$$ R ν ( a , b ) = c a , ν a ν - 1 ∫ b ∞ t ν e - t 2 + a 2 2 K ν - 1 ( a t ) d t , where $$a>0, b\ge 0,$$ a > 0 , b ≥ 0 , $$K_{\nu }$$ K ν stands for the modified Bessel function of the second kind, and $$c_{a,\nu }$$ c a , ν is a constant depending on a and $$\nu $$ ν such that $$R_{\nu }(a,0)=1.$$ R ν ( a , 0 ) = 1 . Our aim is to find some new tight bounds for the generalized Marcum function of the second kind and compare them with the existing bounds. In order to deduce these bounds, we include the monotonicity properties of various functions containing modified Bessel functions of the second kind as our main tools. Moreover, we demonstrate that our bounds in some sense are the best possible ones.
An element of a ring [Formula: see text] is said to be [Formula: see text]-precious if it can be written as the sum of a von Neumann regular element, an idempotent element and a nilpotent element. If all the elements of a ring [Formula: see text] are [Formula: see text]-precious, then [Formula: see text] is called an [Formula: see text]-precious ring. We study some basic properties of [Formula: see text]-precious rings. We also characterize von Neumann regular elements in [Formula: see text] when [Formula: see text] is a Euclidean domain and by this argument, we produce elements that are [Formula: see text]-precious but either not [Formula: see text]-clean or not precious.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.