Nanoscale structures that could mimic the selective transport and extraordinarily fast flow possible in biological cellular channels would have a wide range of potential applications. Here we show that liquid flow through a membrane composed of an array of aligned carbon nanotubes is four to five orders of magnitude faster than would be predicted from conventional fluid-flow theory. This high fluid velocity results from an almost frictionless interface at the carbon-nanotube wall.
An array of aligned carbon nanotubes (CNTs) was incorporated across a polymer film to form a well-ordered nanoporous membrane structure. This membrane structure was confirmed by electron microscopy, anisotropic electrical conductivity, gas flow, and ionic transport studies. The measured nitrogen permeance was consistent with the flux calculated by Knudsen diffusion through nanometer-scale tubes of the observed microstructure. Data on Ru(NH3)6(3+) transport across the membrane in aqueous solution also indicated transport through aligned CNT cores of the observed microstructure. The lengths of the nanotubes within the polymer film were reduced by selective electrochemical oxidation, allowing for tunable pore lengths. Oxidative trimming processes resulted in carboxylate end groups that were readily functionalized at the entrance to each CNT inner core. Membranes with CNT tips that were functionalized with biotin showed a reduction in Ru(NH3)6(3+) flux by a factor of 15 when bound with streptavidin, thereby demonstrating the ability to gate molecular transport through CNT cores for potential applications in chemical separations and sensing.
Nanoscale structures that could mimic the selective transport and extraordinarily fast flow possible in biological cellular channels would have a wide range of potential applications. Here we show that liquid flow through a membrane composed of an array of aligned carbon nanotubes is four to five orders of magnitude faster than would be predicted from conventional fluid-flow theory. This high fluid velocity results from an almost frictionless interface at the carbon-nanotube wall.
Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.
Transport phenomena through the hollow conduits of carbon nanotubes (CNTs) are subjects of intense theoretical and experimental research. We have studied molecular transport over the large spectrum of ionic diffusion to pressure-driven gaseous and liquid flow. Plasma oxidation during the fabrication of the membrane introduces carboxylic acid groups at the CNT entrance, which provides electrostatic "gatekeeper" effects on ionic transport. Diffusive transport of ions of different charge and size through the core of the CNT is close to bulk diffusion expectations and allows estimation of the number of open pores or porosity of the membrane. Flux of gases such as N(2), CO(2), Ar, H(2), and CH(4) scaled inversely with their molecular weight by an exponent of 0.4, close to expected kinetic theory velocity expectations. However, the magnitude of the fluxes was ∼15- to 30-fold higher than predicted from Knudsen diffusion kinetics and consistent with specular momentum reflection inside smooth pores. Polar liquids such as water, ethanol, and isopropyl alcohol and nonpolar liquids such as hexane and decane were dramatically enhanced, with water flow over 4 orders of magnitude larger than "no-slip" hydrodynamic flow predictions. As direct experimental proof for the mechanism of near perfect slip conditions within CNT cores, a stepwise hydrophilic functionalization of CNT membranes from as-produced, tip-functionalized, and core-functionalized was performed. Pressure-driven water flow through the membrane was reduced from 5 × 10(4) to 2 × 10(2) to less than a factor of 5 enhancement over conventional Newtonian flow, while retaining nearly the same pore area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.