Desmoplastic solid tumors are characterized by the rapid build-up of extracellular matrix (ECM) macromolecules, such as hyaluronic acid (HA). The resulting physiological barrier prevents the infiltration of immune cells and also impedes the delivery of anticancer agents. The development of a hypervesiculating Escherichia coli Nissle (š«ECHy) based tumor targeting bacterial system capable of distributing a fusion peptide, cytolysin A (ClyA)-hyaluronidase (Hy) via outer membrane vesicles (OMVs) is reported. The capability of targeting hypoxic tumors, manufacturing recombinant proteins in situ and the added advantage of an on-site OMV based distribution system makes the engineered bacterial vector a unique candidate for peptide delivery. The HA degrading potential of Hy for stromal modulation is combined with the cytolytic activity of ClyA followed by testing it within syngeneic cancer models. š«ECHy is combined with immune checkpoint antibodies and tyrosine kinase inhibitors (TKIs) to demonstrate that remodeling the tumor stroma results in the improvement of immunotherapy outcomes and enhancing the efficacy of biological signaling inhibitors. The biocompatibility of š«ECHy is also investigated to show that the engineered bacteria are effectively cleared, elicit minimal inflammatory and immune responses, and therefore could be a reliable candidate as a live biotherapeutic.
Tannerella HOT-286 (phylotype BU063) is a recently identified novel filamentous Gram-negative anaerobic oral bacterium cultured for the first time recently in co-culture with Propionibacterium acnes. In contrast to the related periodontal disease-associated pathobiont Tannerella forsythia, it is considered a putative health-associated bacterium. In this paper, we identified that this organism could be grown in pure culture if N-acetyl muramic acid (NAM) was provided in the media, although surprisingly the genetic basis of this phenomenon is not likely to be due to a lack of NAM synthesis genes. During further microbiological investigations, we showed for the first time that T. HOT-286 possesses a prominent extracellular S-layer with a novel morphology putatively made up of two proteins modified with an unknown glycan. These data further our knowledge of this poorly understood organism and genus that is an important part of the oral and human microbiome.
BackgroundMany valuable biopharmaceutical and biotechnological proteins have been produced in Escherichia coli, however these proteins are almost exclusively localised in the cytoplasm or periplasm. This presents challenges for purification, i.e. the removal of contaminating cellular constituents. One solution is secretion directly into the surrounding media, which we achieved viaĀ the āhijackā of the flagellar type III secretion system (FT3SS). Ordinarily flagellar subunits are exported through the centre of the growing flagellum, before assembly at the tip. However, we exploit the fact that in the absence of certain flagellar components (e.g. cap proteins), monomeric flagellar proteins are secreted into the supernatant.ResultsWe report the creation and iterative improvement of anĀ E. coliĀ strain, by means of a modified FT3SS and a modular plasmid system, for secretion of exemplar proteins.Ā We show that removal of the flagellin and HAP proteins (FliC and FlgKL) resulted in an optimal prototype. We next developed a high-throughput enzymatic secretion assay based on cutinase. This indicated that removal of theĀ flagellar motor proteins, motAB (to reduce metabolic burden) and protein degradation machinery, clpX (to boost FT3SS levels intracellularly), result in high capacity secretion.Ā We also show that a secretion construct comprising the 5ā²UTR and first 47 amino acidsof FliC fromĀ E. coliĀ (but no 3ā²UTR) achieved the highest levels of secretion.Ā Upon combination, we show a 24-fold improvement in secretion of a heterologous (cutinase) enzyme over the original strain.Ā This improved strain could export a range of pharmaceutically relevant heterologous proteins [hGH, TrxA, ScFv (CH2)], achieving secreted yields of up to 0.29Ā mgĀ Lā1, in low cell density culture.ConclusionsWe have engineered an E. coli which secretes a range of recombinant proteins, through the FT3SS, to the extracellular media. With further developments, including cell culture process strategies, we envision further improvement to the secreted titre of recombinant protein, with the potential application for protein production for biotechnological purposes.Electronic supplementary materialThe online version of this article (10.1186/s12934-019-1058-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsācitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.