Artificial fabrication of a monolayer Kagome material can offer a promising opportunity to explore exceptional quantum states and phenomena in low dimensionality. Here, we have systematically studied a monatomic Ni Kagome lattice grown on Pb(111) by scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT). Sawtooth edge structures with distinct heights due to subsurface Ni atoms have been revealed, leading to asymmetric edge scattering of surface electrons on Pb(111). In addition, a local maximum at about −0.2 eV in tunneling spectra represents a manifestation of characteristic phase-destructive flat bands. Although charge transfer from underlying Pb(111) substrate results in a vanishing magnetic moment of Ni atoms, the proximity-induced superconducting gap is slightly enhanced on the Ni Kagome lattice. In light of singleatomic-layer Ni Kagome lattice on superconducting Pb(111) substrate, it could serve as an ideal platform to investigate the interplay between Kagome physics and superconductivity down to the two-dimensional limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.