We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe_{2} barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.
We present initial statistical results of a new methodology for identifying electron precipitation mechanisms in Earth's auroral zone. Unlike previous methodologies, it identifies multiple mechanisms observed in the same event, utilizing Fast Auroral Snapshot measurements of upward energy and pitch angle spectra in addition to downward energy spectra. For intense precipitation (peak downgoing differential energy flux >108 eV/cm2‐s‐sr‐eV) our method separately identifies the three main precipitation mechanisms: quasi‐static potential structure (inverted‐V, QSPS) acceleration, Alfvénic acceleration, and wave scattering or other nonaccelerated isotropic (diffuse) precipitation. Intense precipitation (~14% of all Fast Auroral Snapshot coverage) accounts for ~80–90% of electron number flux into the ionosphere globally and ~65% of the energy flux on the nightside. It is found that two or more different mechanisms occur in the same event ~60–75% of the time. Alfvénic and QSPS acceleration and the combination of the two contribute substantially. Each of the three primary precipitation mechanisms (alone or in combination) occur >~35% of the time with QSPS and Alfvénic acceleration observed together being the dominant identifiable energy precipitation mechanism/combination. This combination also significantly contributes to the net number flux. QSPS acceleration is the most prevalently observed mechanism (50–60%). The mechanism inferred from classification by downgoing spectral characteristics alone (i.e., monoenergetic = QSPS, broadband = Alfvénic, and diffuse = nonaccelerated isotropic) is not observed in the classification using our method ~20–65% of the time. The results do not confirm and may be inconsistent with wave scattering of electrons (diffuse auroral precipitation) being the dominant mechanism for electron energy and number flux into the ionosphere.
We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe. We observe large interlayer current densities of 2 and 2.5 μA/μm and peak-to-valley ratios approaching 4 and 6 at room temperature and 1.5 K, respectively, values that are comparable to epitaxially grown resonant tunneling heterostructures. An excellent agreement between theoretical calculations using a Lorentzian spectral function for the two-dimensional (2D) quasiparticle states, and the experimental data indicates that the interlayer current stems primarily from energy and in-plane momentum conserving 2D-2D tunneling, with minimal contributions from inelastic or non-momentum-conserving tunneling. We demonstrate narrow tunneling resonances with intrinsic half-widths of 4 and 6 meV at 1.5 and 300 K, respectively.
We investigate interlayer tunneling in heterostructures consisting of two tungsten diselenide (WSe) monolayers with controlled rotational alignment, and separated by hexagonal boron nitride. In samples where the two WSe monolayers are rotationally aligned we observe resonant tunneling, manifested by a large conductance and negative differential resistance in the vicinity of zero interlayer bias, which stem from energy- and momentum-conserving tunneling. Because the spin-orbit coupling leads to coupled spin-valley degrees of freedom, the twist between the two WSe monolayers allows us to probe the conservation of spin-valley degree of freedom in tunneling. In heterostructures where the two WSe monolayers have a 180° relative twist, such that the Brillouin zone of one layer is aligned with the time-reversed Brillouin zone of the opposite layer, the resonant tunneling between the layers is suppressed. These findings provide evidence that, in addition to momentum, the spin-valley degree of freedom is also conserved in vertical transport.
Interlayer tunnel field-effect transistors based on graphene and hexagonal boron nitride (hBN) have recently attracted much interest for their potential as beyond-CMOS devices. Using a recently developed method for fabricating rotationally aligned two-dimensional heterostructures, we show experimental results for devices with varying thicknesses and stacking order of the graphene electrode layers and also model the current-voltage behavior. We show that an increase in the graphene layer thickness results in narrower resonance. However, due to a simultaneous increase in the number of sub-bands and decrease of sub-band separation with an increase in thickness, the negative differential resistance peaks becomes less prominent and do not appear for certain conditions at room temperature. Also, we show that due to the unique band structure of odd number of layer Bernal-stacked graphene, the number of closely spaced resonance conditions increase, causing interference between neighboring resonance peaks. Although this can be avoided with even number of layer graphene, we find that in this case the bandgap opening present at high biases tend to broaden the resonance peaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.