Green chemistry has been an eye catching area of interest since the past few years. With the problem of energy crisis looming high and its constraint being particularly vulnerable on the developing economies, the need for giving alternative traditional chemistry a serious consideration as well as adequate room for development has received significant boost through the coveted efforts of multidisciplinary and interdisciplinary scientific fields. Nanoscience has been the right field in this dimension as it opens up the door to multiple opportunities through enabling a number of chemical, biochemical, and biophysical transformations in a significantly easier and reliable manner. The use of nanoparticles has made the fields of catalysis, synthesis, and enzyme immobilizations as well as molecular interactions a lot much easier, rapid and easily controllable. This review article sheds light on the popular alternative synthesis routes being employed for the synthesis of nanoparticles, the pivotal being from microbes, plants, and chemical routes via sonication, microwaving, and many others.
Here we report a modular strategy for preparing physically cross-linked and mechanically robust free-standing hydrogels comprising unique thermotropic liquid crystalline (LC) domains and magnetic nanoparticles both of which serve as the physical cross-linkers resulting in hydrogels that can be used as magnetically responsive soft actuators. A series of amphiphilic LC pentablock copolymers of poly(acrylic acid) (PAA), poly(5-cholesteryloxypentyl methacrylate) (PC5MA), and poly(ethylene oxide) (PEO) blocks in the sequence of PAA-PC5MA-PEO-PC5MA-PAA were prepared using reversible addition-fragmentation chain transfer polymerization. These pentablock copolymers served as macromolecular ligands to template Fe(3)O(4) magnetic nanoparticles (MNPs), which were directly anchored to the polymer chains through the coordination bonds with the carboxyl groups of PAA blocks. The resulting polymer/MNP nanocomposites comprised a complicated hierarchical structure in which polymer-coated MNP clusters were dispersed in a microsegregated pentablock copolymer matrix that further contained LC ordering. Upon swelling, the hierarchical structure was disrupted and converted to a network structure, in which MNP clusters were anchored to the polymer chains and LC domains stayed intact to connect solvated PEO and PAA blocks, leading to a free-standing LC magnetic hydrogel (LC ferrogel). By varying the PAA weight fraction (f(AA)) in the pentablock copolymers, the swelling degrees (Q) of the resulting LC ferrogels were tailored. Rheological experiments showed that these physically cross-linked free-standing LC ferrogels exhibit good mechanical strength with storage moduli G' of around 10(4)-10(5) Pa, similar to that of natural tissues. Furthermore, application of a magnetic field induced bending actuation of the LC ferrogels. Therefore, these physically cross-linked and mechanically robust LC ferrogels can be used as soft actuators and artificial muscles. Moreover, this design strategy is a versatile platform for incorporation of different types of nanoparticles (metallic, inorganic, biological, etc.) into multifunctional amphiphilic block copolymers, resulting in unique free-standing hybrid hydrogels of good mechanical strength and integrity with tailored properties and end applications.
This article reviews the current status of self-assembling liquid crystalline polymers comprising cholesterol. This article will focus on synthesis, structure-property relationships and strategies to direct ordering and packing of meso- and nanostructures of cholesterol polymers in the neat- or melt state and in solution. The applications of these self-assembled structures will be presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.