In recent years there has been a major reorientation of drug therapy for cardiac arrhythmias, its changing role, and above all, a radical change in the class of arrhythmia drugs because of their impact on mortality. The decline in the use of sodium-channel blockers has led to an ex panding use of beta-blockers and simple or complex class III agents for controlling cardiac arrhythmias. Success with these agents in the context of their side effects has spurred the development of compounds with simpler ion-channel blocking properties that have less complex adverse reactions. The resulting so-called pure class III agents, such as dofetilide or ibutilide, were found to have antifibrillatory effects in atrial fibrillation and flutter and in ventricular tachyarrhythmias. Such agents are effective and have diversity, but they have come into therapeutics with a price: the sometimes-fatal torsades de pointes. The drug amiodarone, a complex compound that was synthesized as an antianginal agent, has been an exception in this regard. Its therapeutic use is associated with a negligibly low incidence of torsades de pointes, even though the drug produces significant bradycardia and QT lengthening to 500 to 700 msec. Recent electrophysiologic studies suggest that this paradox is likely due to the differential block of ion channels in endocardium, epicardium, midmyocardial (M) cells, and Purkinje fibers in the ventricular myocardium. There is also clinical evidence suggesting that amiodarone reduces the "torsadogenic" effects of pure class III agents. Ranolazine was also synthesized for the development of antianginal properties that stem from a partial inhibition of fatty acid oxidation; it too has been found to have electrophysioloigic properties. These are somewhat similar to those of amiodarone on ion channels in endocardium, epicardium, M cells, and Purkinje fibers in the ventricular myocardium, but the drug does not prolong the QT interval to the same extent as amiodarone does. Thus, the drug produces modest increases in repolarization as judged by its effects on the action potential duration (APD) without the potential for the development of torsades de pointes. By virtue of its suppressant action on early afterdepolarizations and triggered activity in Purkinje fibers and M cells, the drug appears to have a powerful potential for reducing the torsadogenic proclivity of conventional class III antiarrhythmic compounds. The rationale for the therapeutic niche for amiodarone, and especially in the case of ranolazine, in the prevention of drug-induced torsades de pointes is discussed.
Dronedarone, a non-iodinated benzofuran derivative, was developed as a potentially less toxic alternative to amiodarone. This study describes Holter data of dronedarone in humans. Five groups of healthy subjects were given 1 of 5 oral doses of dronedarone in a twice-daily regimen or placebo. Holter recordings of circadian rhythmicity of RR and QT intervals were evaluated. Dronedarone prolonged RR and QT intervals as a function of dose, without effect on circadian patterns. The relative prolongation of QT, QTc, and RR by dronedarone was significant. The QTc interval did not exhibit a clearly recognizable circadian pattern, suggesting that the circadian pattern of the QT interval was mostly a reflection of circadian changes in the RR interval in the study population. Dronedarone resembled amiodarone in class III and sympatholytic effects, indicating its potential as a unique antiarrhythmic compound seemingly devoid of the side effects mediated by iodine in amiodarone.
Peripheral arterial disease (PAD) is a prevalent, chronic, and progressive atherosclerotic disease process involving the conduit vessels of the extremities. Most patients who present with objective signs of PAD are asymptomatic. These patients are at an increased risk of dying from cardiovascular events. Lipid management is the mainstay of risk-factor modification for patients with cardiovascular disease. Some evidence suggests that hypocholesterolemic drugs may halt the progression of atherosclerotic peripheral vascular disease. More recently, treatment with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitors have demonstrated improved function in patients with symptomatic peripheral vascular disease. This paper reviews the role of lipid therapy in patients with peripheral arterial disease with focus on functional improvement and symptomatic relief based on the available data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.