Type 2 diabetes (T2D) is a complex disease with an elusive link between its molecular aetiology and clinical presentation. Although, the role of visceral adipose tissue in insulin-resistance and T2D is known, limited information is available on the role of peripheral-subcutaneous adipose tissue especially in Asian Indians. In this microarray-based study of diabetic and normal glucose tolerant Asian Indians, we generated the transcriptome of their thigh adipose tissue and analyzed differentially expressed genes (DEGs) using weighted gene co-expression network analysis; further we identified perturbed pathways implicated by these DEGs in relevant co-expression modules. We also attempted to link these pathways with known aspects of T2D pathophysiology in terms of their association with some of their intermediate traits, namely; adipocyte size, HOMA-B, HOMA-R, Hb1Ac, insulin, glucose-level, TNF-α, IL-6, VLDLs, LDLs, HDLs, and NEFAs. It was observed that several modules of co-expressed genes show an association with diabetes and some of its intermediate phenotypic traits mentioned above. Therefore, these findings suggest a role of peripheral subcutaneous adipose tissue in the pathophsiology of T2D in Asian Indians. Additionally, our study indicated that the peripheral subcutaneous adipose tissue in diabetics shows pathologic changes characterized by adipocyte hypertrophy and up-regulation of inflammation-related pathways.
Plant extracts are very cost effective and eco-friendly, thus, can be an economic and efficient alternative for the large-scale synthesis of nanoparticles. The preparation of stable, uniform silver nanoparticles by reduction of silver ions with Emblica officinalis, Terminalia catappa and Eucalyptus hybrida extract is reported in the present paper. It is a simple process of global research interest for obtaining silver nanoparticles in least amount of time. These nanoparticles were characterized with UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy diffraction X-ray (EDX analysis which revealed that the silver nanoparticles are polydisperse and of different morphologies ranging from 20 to 80 nm in size. XRD results reveal that these nanostructures exhibit a face-centered cubic crystal structure. The UV/Vis spectra absorption peak confirms their production. Pioneering of reliable and eco-friendly process for synthesis of metallic nanoparticles biologically is an important step in the field of application of nanobiotechnology. Thus, these silver nanoparticles (Ag-NPs) may prove as a better candidate for drugs and can potentially eliminate the problem of chemical agents because of their biogenic nature. The indiscriminate use of antibiotics has fuelled the development of drug resistance at an alarming rate. To overpower this burning problem, the Ag-NPs may prove to be a universal solution.
The roles of abdominal visceral (VAT) and subcutaneous adipose tissue (SAT) in the molecular pathogenesis type-2 diabetics (T2D) among Asian Indians showing a “thin fat” phenotype largely remains obscure. In this study, we generated transcription profiles in biopsies of these adipose depots obtained during surgery in 19 diabetics (M: F ratio, 8:11) and 16 (M: F ratio 5:11) age- and BMI-matched non-diabetics. Gene set enrichment analysis (GSEA) was used for comparing transcription profile and showed that 19 gene sets, enriching inflammation and immune system-related pathways, were upregulated in diabetics with F.D.R. <25% and >25%, respectively, in VAT and SAT. Moreover, 13 out of the 19 significantly enriched pathways in VAT were among the top 20 pathways in SAT. On comparison of VAT vs. SAT among diabetics, none of the gene sets were found significant at F.D.R. <25%. The Weighted Gene Correlation Analysis (WGCNA) analysis of the correlation between measures of average gene expression and overall connectivity between VAT and SAT was significantly positive. Several modules of co-expressed genes in both the depots showed a bidirectional correlation with various diabetes-related intermediate phenotypic traits. They enriched several diabetes pathogenicity marker pathways, such as inflammation, adipogenesis, etc. It is concluded that, in Asian Indians, diabetes pathology inflicts similar molecular alternations in VAT and SAT, which are more intense in the former. Both adipose depots possibly play a role in the pathophysiology of T2D, and whether it is protective or pathogenic also depends on the nature of modules of co-expressed genes contained in them.
: Inborn errors of metabolism (IEM) are heterogeneous group of rare genetic disorders which are generally transmitted as autosomal or X-linked recessive ones. These defects arise due to mutations associated with specific gene(s) especially the ones associated with key metabolic enzymes. These enzymes or their product(s) are involved in various metabolic pathways- leading to accumulation of intermediary metabolite(s), which reflects their toxic effects upon mutations. The diagnosis of these metabolic disorders is based on the biochemical analysis of the clinical manifestations produced and its molecular mechanism. It is therefore imperative to devise diagnostic tests with high sensitivity, and specificity for early detection of IEM. Recent advances in biochemical and polymerase chain reaction based genetic analysis along with pedigree and prenatal diagnosis can be life saving in nature. Latest development in exome sequencing for rapid diagnosis and enzyme replacement therapy would be expected to facilitate the successful treatment of these metabolic disorders in future. Although the long-term clinical implications of these genetic manipulations are still a matter of debate among the intellectuals and is a matter of further research.
The pathogenic mechanisms causing type 2 diabetes (T2D) are still poorly understood; a greater awareness of its causation can lead to the development of newer and better antidiabetic drugs. In this study, we used a network-based approach to assess the cellular processes associated with protein–protein interaction subnetworks of glycemic traits—HOMA-β and HOMA-IR. Their subnetworks were further analyzed in terms of their overlap with the differentially expressed genes (DEGs) in pancreatic, muscle, and adipose tissue in diabetics. We found several DEGs in these tissues showing an overlap with the HOMA-β subnetwork, suggesting a role of these tissues in β-cell failure. Many genes in the HOMA-IR subnetwork too showed an overlap with the HOMA-β subnetwork. For understanding the functional theme of these subnetworks, a pathway-to-pathway complementary network analysis was done, which identified various adipose biology-related pathways, containing genes involved in both insulin secretion and action. In conclusion, network analysis of genes showing an association between T2D and its intermediate phenotypic traits suggests their potential role in beta cell failure. These genes enriched the adipo-centric pathways and were expressed in both pancreatic and adipose tissue and, therefore, might be one of the potential targets for future antidiabetic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.