Overhung rotors are important for use in industrial turbo-machines. The effects of a lateral force can increase as a result of the rotor weight, misalignment, or the operating speed of the suspension system for which the rotor is carrying a transmission connection. In this paper, the reduction of vibration in supported lateral directions by varying control is discussed in a radial active magnetic bearing system (AMBS). An experimental test was conducted on the orbital response of an overhung rotor supported by an AMBS, to provide an alternative for improving precision. To simplify the system design, decoupling was achieved using a PID controller and harmonic disturbance compensator (HDC), which improved the rotating performance of an overhung active magnetic bearing (AMB) rotor system, using a frequency response function (FRF) approach and a description of the overhung rotor during normal operational conditions at unique frequencies. The experimental results show that the precision rotation, due to harmonic excitation of the shaft orbit, can be removed in real time using compensation signals using trigonometry. The compensation criteria for the changed run-up and coast-down consistently helped to maintain the rotational center in a central position. A reduction of up to 55% in vibration amplitude on average was achieved under appropriate conditions, and the significance of the overhung rotor symptoms faults were investigated.
The cargo box frame (CBF) is the main structure of a commercial vehicle designed to handle loads and components during travel. The chassis is subject to vibrations caused by rough roads and the components mounted on it. This study proposes a procedure for analyzing and validating CBF structures using a combination of non-destructive modal analysis and finite element analysis to investigate the vibration characteristics of the four-wheel CBF, including its natural frequency and mode shapes. The CBF’s response to various load conditions, including stress distribution and displacement, was analyzed. The results show that the actuation frequency can affect a truck’s chassis due to the CBF’s natural frequency falling within the excitation range. The resulting mode shape can improve CBF strength, reduce weight, identify defective welds, and determine optimal mounting locations based on the center of gravity (CG) for components such as side-swing doors and cold room panels.
Finger traps are a valuable tool that can be maintained the traction. The devices stretch the thumb and other four fingers separately in order to achieve better reduction effect. These are applied individually to the fingers and the limb is suspended, with gravity providing counter-traction to disimpact the fracture by traction. However, personal gravity can’t be used to maintain the appropriate tension. This paper proposed an experimental study on the tension of counter-traction mechanism to finger traps for fracture reduction. This mechanism is particularly useful to help for the patients. Transfer function estimation from experimental data can improve the overall identification performance and the parameter. The feedback control system design for compensating tension that loses from disturbance tension consisted of the controller as PI controller and actuator as DC motor with counter-traction mechanism. Experimental results were demonstrated the efficiency of the proposed system to maintain the appropriate tension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.