Magnetic skyrmions are topologically stable vortex-like spin structures that are promising for next generation information storage applications. Materials that host magnetic skyrmions, such as MnSi and FeGe with the noncentrosymmetric cubic B20 crystal structure, have been shown to stabilize skyrmions upon nanostructuring. Here, we report a chemical vapor deposition method to selectively grow nanowires (NWs) of cubic FeGe out of three possible FeGe polymorphs for the first time using finely ground particles of cubic FeGe as seeds. X-ray diffraction and transmission electron microscopy (TEM) confirm that these micron-length NWs with ∼100 nm to 1 μm diameters have the cubic B20 crystal structure. Although FeGe NWs are also formed, the two types of NWs can be readily differentiated by their faceting. Lorentz TEM imaging of the cubic FeGe NWs reveals a skyrmion lattice phase under small applied magnetic fields (∼0.1 T) at 233 K, a skyrmion chain state at lower temperatures (95 K) and under high magnetic fields (∼0.4 T), and a larger skyrmion stability window than bulk FeGe. This synthetic approach to cubic FeGe NWs that support stabilized skyrmions opens a route toward the exploration of new skyrmion physics and devices based on similar nanostructures.
In bulk chiral crystals, 3D structures of magnetic skyrmions form topologically protected skyrmion strings (SkS) that have shown potential as magnonic nano‐waveguides for information transfer. Although SkS stability is expected to be enhanced in nanostructures of skyrmion‐hosting materials, experimental observation and detection of SkS in nanostructures under an applied in‐plane magnetic field is difficult. Here, temperature‐dependent magnetic field‐driven creation and annihilation of SkS in B20 FeGe nanostructures (nanowires and nanoplates) under in‐plane magnetic field (H||) are shown and the mechanisms behind these transformations are explained. Unusual asymmetric and hysteretic magnetoresistance (MR) features are observed but previously unexplained during magnetic phase transitions within the SkS stability regime when H|| is along the nanostructure's long edge, which increase the sensitivity of MR detection. Lorentz transmission electron microscopy of the SkS and other magnetic textures under H|| in corroboration with the analysis of the anisotropic MR responses elucidates the field‐driven creation and annihilation processes of SkS responsible for such hysteretic MR features and reveals an unexplored stability regime in nanostructures.
Magnetic skyrmions are a new form of magnetic ordering with whirlpool-like spin arrangements. These topologically protected particlelike spin textures were first discovered a decade ago in noncentrosymmetric magnetic materials. Confining magnetic skyrmions in nanostructures leads to interesting fundamental insights into skyrmion stability and could provide convenient platforms for potential practical applications of skyrmions in information storage technology. In this research update, we summarize the recent advances on studying magnetic skyrmions in nanostructures of skyrmion hosting noncentrosymmetric materials (especially the B20 materials) made via bottom-up synthesis or top-down fabrication methods. We discuss various real space imaging (such as Lorentz transmission electron microscopy or electron holography) or physical property measurement (such as magneto-transport) techniques that have been used to observe and detect these exotic magnetic domains in both nanostructure and bulk samples, which have proven to be critical to fully understanding them. We examine the importance of morphology and dimensionality of skyrmion hosting materials in stabilizing isolated magnetic skyrmions in confined geometry and their benefits for implementation in magnetic memory applications. We further highlight the need for experiments that allow the skyrmion research to move from the fundamental physics of skyrmion formation and dynamics to more applied device studies and eventual applications, such as the all-electrical writing and reading of skyrmions needed for skyrmion-based high density magnetic memory storage devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.