Rational arithmetic functions are arithmetic functions of the formg1∗⋯∗gr∗h1−1∗⋯∗hs−1, wheregi,hjare completely multiplicative functions and∗denotes the Dirichlet convolution. Four aspects of these functions are studied. First, some characterizations of such functions are established; second, possible Busche-Ramanujan-type identities are investigated; third, binomial-type identities are derived; and finally, properties of the Kesava Menon norm of such functions are proved.
Using the generalized Möbius functions,μα, first introduced by Hsu (1995), two characterizations of completely multiplicative functions are given; save a minor condition they read(μαf)−1=μ−αfandfα=μ−αf.
A generalized Ramanujan sum (GRS) is defined by replacing the usual Möbius function in the classical Ramanujan sum with the Souriau-Hsu-Möbius function. After collecting basic properties of a GRS, mostly containing existing ones, seven aspects of a GRS are studied. The first shows that the unique representation of even functions with respect to GRSs is possible. The second is a derivation of the mean value of a GRS. The third establishes analogues of the remarkable Ramanujan's formulae connecting divisor functions with Ramanujan sums. The fourth gives a formula for the inverse of a GRS. The fifth is an analysis showing when a reciprocity law exists. The sixth treats the problem of dependence. Finally, some characterizations of completely multiplicative function using GRSs are obtained and a connection of a GRS with the number of solutions of certain congruences is indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.