Many researchers’ attentions have been attracted to various growth properties of meromorphic solution f (of finite φ-order) of the following higher order linear difference equation Anzfz+n+...+A1zfz+1+A0zfz=0, where Anz,…,A0z are entire or meromorphic coefficients (of finite φ-order) in the complex plane (φ:[0,∞)→(0,∞) is a non-decreasing unbounded function). In this paper, by introducing a constant b (depending on φ) defined by lim̲r→∞logrlogφ(r)=b<∞, and we show how nicely diverse known results for the meromorphic solution f of finite φ-order of the above difference equation can be modified.
We revisit the problem of studying the solutions growth order in complex higher order linear differential equations with entire and meromorphic coefficients of p,q-order, proving how it is related to the growth of the coefficient of the unknown function under adequate assumptions. Our study improves the previous results due to J. Liu - J. Tu - L. Z Shi, L.M. Li - T.B. Cao, and others.
In this paper we investigate some properties related to sum and product of different relative growth factors of an entire function with respect to another entire function in connection with a special type of non-decreasing, unbounded function ψ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.