Flexgrid technology is now considered to be a promising solution for future high-speed network design. In this context, we need a tutorial that covers the key aspects of elastic optical networks. This tutorial paper starts with a brief introduction of the elastic optical network and its unique characteristics. The paper then moves to the architecture of the elastic optical network and its operation principle. To complete the discussion of network architecture, this paper focuses on the different node architectures, and compares their performance in terms of scalability and flexibility. Thereafter, this paper reviews and classifies routing and spectrum allocation (RSA) approaches including their pros and cons. Furthermore, various aspects, namely -fragmentation, modulation, quality-of-transmission, traffic grooming, survivability, energy saving, and networking cost related to RSA, are presented. Finally, the paper explores the experimental demonstrations that have tested the functionality of the elastic optical network, and follows that with the research challenges and open issues posed by flexible networks.Index Terms-Elastic optical networks, node architecture, spectrum management, routing and spectrum allocation, and sliceable bandwidth-variable transponder.
Wireless sensor networks (WSNs) are required to provide different levels of Quality of Services (QoS) based on the type of applications. Providing QoS support in wireless sensor networks is an emerging area of research. Due to resource constraints like processing power, memory, bandwidth and power sources in sensor networks, QoS support in WSNs is a challenging task. In this paper, we discuss the QoS requirements in WSNs and present a survey of some of the QoS aware routing techniques in WSNs. We also explore the middleware approaches for QoS support in WSNs and finally, highlight some open issues and future direction of research for providing QoS in WSNs.
To provide high quality communications service among mobile wireless devices is basically a challenging task in wireless ad hoc networks. In this paper, we propose a Route Stability based QoS Routing (RSQR) protocol in Mobile Ad Hoc Networks (MANETs) which is an extension of QoS routing with throughput and delay constraints. Ensuring a data path to be valid for sufficiently longer period of time is a very difficult problem in MANET due to its highly dynamic nature. We propose a simple model for computing link stability and route stability based on received signal strengths. By including some extra fields in route request/reply packets, the route stability information can be utilized to select a route with higher stability among all the feasible routes between a given source destination pair. Further, inclusion of a signal strength based admission control enhances the performance of the routing. Results of our experiments show performance improvements in terms of packet delivery ratio, control overhead and average end-to-end delay in comparison with a QoS routing protocol proposed by Q. Xue and A. Ganz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.