Although several reports have documented nitric oxide (NO) regulation of biofilm formation, the molecular basis of this phenomenon is unknown. In many bacteria, an H-NOX (heme-nitric oxide/oxygen-binding) gene is found near a diguanylate cyclase (DGC) gene. H-NOX domains are conserved hemoproteins that are known NO sensors. It is widely recognized that cyclic di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates the transition between motility and biofilm. Therefore, NO may influence biofilm formation through H-NOX regulation of DGC, thus providing a molecular-level explanation for NO regulation of biofilm formation. This work demonstrates that, indeed, NO-bound H-NOX negatively affects biofilm formation by directly regulating c-di-GMP turnover in Shewanella woodyi strain MS32. Exposure of wild-type S. woodyi to a nanomolar level of NO resulted in the formation of thinner biofilms, and less intracellular c-di-GMP, than in the absence of NO. Also, a mutant strain in the gene encoding SwH-NOX showed a decreased level of biofilm formation (and a decreased amount of intracellular c-di-GMP) with no change observed upon NO addition. Furthermore, using purified proteins, it was demonstrated that SwH-NOX and SwDGC are binding partners. SwDGC is a dual-functioning DGC; it has diguanylate cyclase and phosphodiesterase activities. These data indicate that NO-bound SwH-NOX enhances c-di-GMP degradation, but not synthesis, by SwDGC. These results support the biofilm growth data and indicate that S. woodyi senses nanomolar NO with an H-NOX domain and that SwH-NOX regulates SwDGC activity, resulting in a reduction in c-di-GMP concentration and a decreased level of biofilm growth in the presence of NO. These data provide a detailed molecular mechanism for NO regulation of c-di-GMP signaling and biofilm formation.
Phloem-mobile insecticides are efficient for piercing and sucking insect control. Introduction of sugar or amino acid groups to the parent compound can improve the phloem mobility of insecticides, so a glycinergic−fipronil conjugate (GlyF), 2- (3-(3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-5-yl)ureido) acetic acid, was designed and synthesized. Although the "Kleier model" predicted that this conjugate is not phloem mobile, GlyF can be continually detected during a 5 h collection of Ricinus communis phloem sap. Furthermore, an R. communis seedling cotyledon disk uptake experiment demonstrates that the uptake of GlyF is sensitive to pH, carbonyl cyanide m-chlorophenylhydrazone (CCCP), temperature, and p-chloromercuribenzenesulfonic acid (pCMBS) and is likely mediated by amino acid carrier system. To explore the roles of amino acid transporters (AATs) in GlyF uptake, a total of 62 AAT genes were identified from the R. communis genome in silico. Phylogenetic analysis revealed that AATs in R. communis were organized into the ATF (amino acid transporter) and APC (amino acid, polyaminem and choline transporter) superfamilies, with five subfamilies in ATF and two in APC. Furthermore, the expression profiles of 20 abundantly expressed AATs (cycle threshold (Ct) values <27) were analyzed at 1, 3, and 6 h after GlyF treatment by RT-qPCR. The results demonstrated that expression levels of four AAT genes, RcLHT6, RcANT15, RcProT2, and RcCAT2, were induced by the GlyF treatment in R. communis seedlings. On the basis of the observation that the expression profile of the four candidate genes is similar to the time course observation for GlyF foliar disk uptake, it is suggested that those four genes are possible candidates involved in the uptake of GlyF. These results contribute to a better understanding of the mechanism of GlyF uptake as well as phloem loading from a molecular biology perspective and facilitate functional characterization of candidate AAT genes in future studies.
• ufPWV technique is real-time and well repeatable for assessing carotid stiffness • ufPWV measurements increase and correlate well with age • PWV-ES is a quantitative predictor for the early assessment of AS.
To enhance the faradic efficiency of the electrocatalytic CO2 reduction reaction (CO2RR) with stable catalysts, atomically dispersed Ni–N5 active sites composed of planar Ni–N4 (in nickel phthalocyanine) coordinated with the N atom in the carbon matrix (denoted as NiPc/NC) were proposed to reduce CO2 into CO products. Extended X-ray absorption fine structure (EXAFS) spectroscopy and aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) measurements confirmed that the Ni–N5 structure composed of single Ni atoms in NiPc and N doped in the carbon matrix. Density functional theory (DFT) calculations reveal that an energy barrier of only +0.89 eV is required for the process to take place on the surface of NiPc@pyridinic N. This barrier is significantly lower than in the case of NiPc@graphitic N (+2.12 eV), NiPc@pyrrolic N (+1.60 eV), and NiPc@C (+2.64 eV). This result suggests that the high CO2RR activity originates from the synergistic effect between the coordinatively unsaturated Ni–N4 sites and the surface pyridinic N species. The faradic efficiency of CO2 reduction into the CO product was ≥93% over the NiPc/NC catalyst in a wide potential range of −0.5 to −0.8 V (vs a reversible hydrogen electrode, RHE). The peak CO faradic efficiency was 98% at a potential of −0.5 V due to the synergistic effect of Ni–N4 sites in NiPc and pyridinic N atom doped in NC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.