Nanomaterials such as graphene have been added to various matrices to enhance mechanical, thermal and electrical properties for various applications requiring intricate designs at the micro-scale. At this scale, mechanical micro-machining is utilised as post-processing to achieve high surface quality and dimensional accuracy while still maintaining high productivity. Therefore, in this study, the machinability of polymer nanocomposites in micro-scale (micro-machinability) is investigated. Graphene (0.3 wt%)-reinforced epoxy nanocomposites were fabricated using traditional solution mixing and moulding. The samples were then subjected to micro-milling at various cutting speeds using three different micro-tools, including uncoated, diamond and diamond-like carbon (DLC) tools. Mechanical and thermal properties of nanocomposite were also used to support the discussions. The result indicates that the DLC-coated tool shows better performance than the other tools for less tool wear, improved surface quality and less cutting forces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.