SummarySmall RNAs (sRNAs) associated with the RNA chaperon protein Hfq are key posttranscriptional regulators of gene expression in bacteria. Deciphering the sRNA-target interactome is an essential step toward understanding the roles of sRNAs in the cellular networks. We developed a broadly applicable methodology termed RIL-seq (RNA interaction by ligation and sequencing), which integrates experimental and computational tools for in vivo transcriptome-wide identification of interactions involving Hfq-associated sRNAs. By applying this methodology to Escherichia coli we discovered an extensive network of interactions involving RNA pairs showing sequence complementarity. We expand the ensemble of targets for known sRNAs, uncover additional Hfq-bound sRNAs encoded in various genomic regions along with their trans encoded targets, and provide insights into binding and possible cycling of RNAs on Hfq. Comparison of the sRNA interactome under various conditions has revealed changes in the sRNA repertoire as well as substantial re-wiring of the network between conditions.
Small RNAs (sRNAs) are major post-transcriptional regulators of gene expression in bacteria. To enable transcriptome-wide mapping of bacterial sRNA-target pairs, we developed RIL-seq (RNA interaction by ligation and sequencing). RIL-seq is an experimental-computational methodology for capturing sRNA-target interactions in vivo that takes advantage of the mutual binding of the sRNA and target RNA molecules to the RNA chaperone protein Hfq. The experimental part of the protocol involves co-immunoprecipitation of Hfq and bound RNAs, ligation of RNAs, library preparation and sequencing. The computational pipeline maps the sequenced fragments to the genome, reveals chimeric fragments (fragments comprising two ligated independent fragments) and determines statistically significant overrepresented chimeric fragments as interacting RNAs. The statistical filter is aimed at reducing the number of spurious interactions resulting from ligation of random neighboring RNA fragments, thus increasing the reliability of the determined sRNA-target pairs. A major advantage of RIL-seq is that it does not require overexpression of sRNAs; instead, it simultaneously captures the in vivo targets of all sRNAs in the native state of the cell. Application of RIL-seq to bacteria grown under different conditions provides distinctive snapshots of the sRNA interactome and sheds light on the dynamics and rewiring of the post-transcriptional regulatory network. As RIL-seq needs no prior information about the sRNA and target sequences, it can identify novel sRNAs, along with their targets. It can be adapted to detect protein-mediated RNA-RNA interactions in any bacterium with a sequenced genome. The experimental part of the RIL-seq protocol takes 7-9 d and the computational analysis takes ∼2 d.
Bacterial RNase III plays important roles in the processing and degradation of RNA transcripts. A major goal is to identify the cleavage targets of this endoribonuclease at a transcriptome-wide scale and delineate its in vivo cleavage rules. Here we applied to Escherichia coli grown to either exponential or stationary phase a tailored RNA-seq-based technology, which allows transcriptome-wide mapping of RNase III cleavage sites at a nucleotide resolution. Our analysis of the large-scale in vivo cleavage data substantiated the established cleavage pattern of a double cleavage in an intra-molecular stem structure, leaving 2-nt-long 3′ overhangs, and refined the base-pairing preferences in the cleavage site vicinity. Intriguingly, we observed that the two stem positions between the cleavage sites are highly base-paired, usually involving at least one G-C or C-G base pair. We present a clear distinction between intra-molecular stem structures that are RNase III substrates and intra-molecular stem structures randomly selected across the transcriptome, emphasizing the in vivo specificity of RNase III. Our study provides a comprehensive map of the cleavage sites in both intra-molecular and inter-molecular duplex substrates, providing novel insights into the involvement of RNase III in post-transcriptional regulation in the bacterial cell.
Application of linoleic and linolenic acids to Phalaenopsis and Dendrobium flowers enhanced their senescence and promoted ethylene production. This effect was specific to unsaturated fatty acids which serve as substrates for lipoxygenase action, and did not occur following similar treatments with saturated fatty acids. Several major lipoxygenase pathway metabolites including jasmonic acid methyl ester, traumatic acid, trans‐2‐hexenal and cis‐3‐hexenol also enhanced flower senescence. Jasmonic acid methyl ester promoted ethylene production by Phalaenopsis flowers. In contrast, treating flowers with the lipoxygenase inhibitors salicylhydroxamic acid and n‐propyl gallate. which inhibite(d) lipoxygenase activity in vitro, had no effect on pollination‐induced senescence of the flowers. Furthermore, during the 50‐h period following pollination, there was no increase in lipoxygenase activity in Phalaenopsis flowers. During the 10‐h period from pollination of Dendrobium flowers until the initiation of ethylene production, there was no effect of pollination on jasmonate levels in either the perianth or the columns. These results suggest that lipoxygenase activity and jasmonates are not directly involved in pollination‐induced Phalaenopsis and Dendrobium flower senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.